BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 33203676)

  • 1. Absolute ion hydration free energy scale and the surface potential of water via quantum simulation.
    Shi Y; Beck TL
    Proc Natl Acad Sci U S A; 2020 Dec; 117(48):30151-30158. PubMed ID: 33203676
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Absolute proton hydration free energy, surface potential of water, and redox potential of the hydrogen electrode from first principles: QM/MM MD free-energy simulations of sodium and potassium hydration.
    Hofer TS; Hünenberger PH
    J Chem Phys; 2018 Jun; 148(22):222814. PubMed ID: 29907057
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quasichemical and structural analysis of polarizable anion hydration.
    Rogers DM; Beck TL
    J Chem Phys; 2010 Jan; 132(1):014505. PubMed ID: 20078170
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrated Anions: From Clusters to Bulk Solution with Quasi-Chemical Theory.
    Gomez DT; Pratt LR; Asthagiri DN; Rempe SB
    Acc Chem Res; 2022 Aug; 55(16):2201-2212. PubMed ID: 35829622
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Length scales and interfacial potentials in ion hydration.
    Shi Y; Beck TL
    J Chem Phys; 2013 Jul; 139(4):044504. PubMed ID: 23901990
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure and dynamics of the hydration shells of the Zn(2+) ion from ab initio molecular dynamics and combined ab initio and classical molecular dynamics simulations.
    Cauët E; Bogatko S; Weare JH; Fulton JL; Schenter GK; Bylaska EJ
    J Chem Phys; 2010 May; 132(19):194502. PubMed ID: 20499974
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single-Ion Thermodynamics from First Principles: Calculation of the Absolute Hydration Free Energy and Single-Electrode Potential of Aqueous Li
    Prasetyo N; Hünenberger PH; Hofer TS
    J Chem Theory Comput; 2018 Dec; 14(12):6443-6459. PubMed ID: 30284829
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydration of krypton and consideration of clathrate models of hydrophobic effects from the perspective of quasi-chemical theory.
    Ashbaugh HS; Asthagiri D; Pratt LR; Rempe SB
    Biophys Chem; 2003 Sep; 105(2-3):323-38. PubMed ID: 14499902
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quasichemical analysis of the cluster-pair approximation for the thermodynamics of proton hydration.
    Pollard T; Beck TL
    J Chem Phys; 2014 Jun; 140(22):224507. PubMed ID: 24929407
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Free energy partitioning analysis of the driving forces that determine ion density profiles near the water liquid-vapor interface.
    Arslanargin A; Beck TL
    J Chem Phys; 2012 Mar; 136(10):104503. PubMed ID: 22423844
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The thermodynamics of proton hydration and the electrochemical surface potential of water.
    Pollard TP; Beck TL
    J Chem Phys; 2014 Nov; 141(18):18C512. PubMed ID: 25399177
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solvation of the Guanidinium Ion in Pure Aqueous Environments: A Theoretical Study from an "Ab Initio"-Based Polarizable Force Field.
    Houriez C; Meot-Ner Mautner M; Masella M
    J Phys Chem B; 2017 Dec; 121(50):11219-11228. PubMed ID: 29182348
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hofmeister effects: interplay of hydration, nonelectrostatic potentials, and ion size.
    Parsons DF; Boström M; Lo Nostro P; Ninham BW
    Phys Chem Chem Phys; 2011 Jul; 13(27):12352-67. PubMed ID: 21670834
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Re-examining the tetraphenyl-arsonium/tetraphenyl-borate (TATB) hypothesis for single-ion solvation free energies.
    Pollard TP; Beck TL
    J Chem Phys; 2018 Jun; 148(22):222830. PubMed ID: 29907029
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determination of protein surface hydration shell free energy of water motion: theoretical study and molecular dynamics simulation.
    Sheu SY; Yang DY
    J Phys Chem B; 2010 Dec; 114(49):16558-66. PubMed ID: 21090707
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Water coordination structures and the excess free energy of the liquid.
    Merchant S; Shah JK; Asthagiri D
    J Chem Phys; 2011 Mar; 134(12):124514. PubMed ID: 21456683
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ion hydration free energies and water surface potential in water nano drops: The cluster pair approximation and the proton hydration Gibbs free energy in solution.
    Houriez C; Réal F; Vallet V; Mautner M; Masella M
    J Chem Phys; 2019 Nov; 151(17):174504. PubMed ID: 31703526
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure and dynamics of the CrIII ion in aqueous solution: Ab initio QM/MM molecular dynamics simulation.
    Kritayakornupong C; Plankensteiner K; Rode BM
    J Comput Chem; 2004 Oct; 25(13):1576-83. PubMed ID: 15264252
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Octa-Coordination and the Aqueous Ba(2+) Ion.
    Chaudhari MI; Soniat M; Rempe SB
    J Phys Chem B; 2015 Jul; 119(28):8746-53. PubMed ID: 26085171
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An analysis of molecular packing and chemical association in liquid water using quasichemical theory.
    Paliwal A; Asthagiri D; Pratt LR; Ashbaugh HS; Paulaitis ME
    J Chem Phys; 2006 Jun; 124(22):224502. PubMed ID: 16784293
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.