BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 33203677)

  • 1. Tight and specific lanthanide binding in a de novo TIM barrel with a large internal cavity designed by symmetric domain fusion.
    Caldwell SJ; Haydon IC; Piperidou N; Huang PS; Bick MJ; Sjöström HS; Hilvert D; Baker D; Zeymer C
    Proc Natl Acad Sci U S A; 2020 Dec; 117(48):30362-30369. PubMed ID: 33203677
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physics-based approach to extend a de novo TIM barrel with rationally designed helix-loop-helix motifs.
    Kordes S; Beck J; Shanmugaratnam S; Flecks M; Höcker B
    Protein Eng Des Sel; 2023 Jan; 36():. PubMed ID: 37707513
    [TBL] [Abstract][Full Text] [Related]  

  • 3. De Novo Design of Four-Helix Bundle Metalloproteins: One Scaffold, Diverse Reactivities.
    Lombardi A; Pirro F; Maglio O; Chino M; DeGrado WF
    Acc Chem Res; 2019 May; 52(5):1148-1159. PubMed ID: 30973707
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diversifying de novo TIM barrels by hallucination.
    Beck J; Shanmugaratnam S; Höcker B
    Protein Sci; 2024 Jun; 33(6):e5001. PubMed ID: 38723111
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering Metalloprotein Functions in Designed and Native Scaffolds.
    Nastri F; D'Alonzo D; Leone L; Zambrano G; Pavone V; Lombardi A
    Trends Biochem Sci; 2019 Dec; 44(12):1022-1040. PubMed ID: 31307903
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational approaches for
    Akcapinar GB; Sezerman OU
    Biosci Rep; 2017 Apr; 37(2):. PubMed ID: 28167677
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineered lanthanide-binding metallohomeodomains: designing folded chimeras by modular turn substitution.
    Lim S; Franklin SJ
    Protein Sci; 2006 Sep; 15(9):2159-65. PubMed ID: 16943445
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design of lanthanide fingers: compact lanthanide-binding metalloproteins.
    am Ende CW; Meng HY; Ye M; Pandey AK; Zondlo NJ
    Chembiochem; 2010 Aug; 11(12):1738-47. PubMed ID: 20623571
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Of folding and function: understanding active-site context through metalloenzyme design.
    Harris KL; Lim S; Franklin SJ
    Inorg Chem; 2006 Dec; 45(25):10002-12. PubMed ID: 17140195
    [TBL] [Abstract][Full Text] [Related]  

  • 10.
    Webster AM; Peacock AFA
    Chem Commun (Camb); 2021 Jul; 57(56):6851-6862. PubMed ID: 34151325
    [TBL] [Abstract][Full Text] [Related]  

  • 11. De novo design of a four-fold symmetric TIM-barrel protein with atomic-level accuracy.
    Huang PS; Feldmeier K; Parmeggiani F; Velasco DAF; Höcker B; Baker D
    Nat Chem Biol; 2016 Jan; 12(1):29-34. PubMed ID: 26595462
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Femtomolar Zn(II) affinity in a peptide-based ligand designed to model thiolate-rich metalloprotein active sites.
    Petros AK; Reddi AR; Kennedy ML; Hyslop AG; Gibney BR
    Inorg Chem; 2006 Dec; 45(25):9941-58. PubMed ID: 17140191
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metalloprotein and metallo-DNA/RNAzyme design: current approaches, success measures, and future challenges.
    Lu Y
    Inorg Chem; 2006 Dec; 45(25):9930-40. PubMed ID: 17140190
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Incorporating metals into de novo proteins.
    Peacock AF
    Curr Opin Chem Biol; 2013 Dec; 17(6):934-9. PubMed ID: 24183813
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Noncoded Amino Acids in de Novo Metalloprotein Design: Controlling Coordination Number and Catalysis.
    Koebke KJ; Pecoraro VL
    Acc Chem Res; 2019 May; 52(5):1160-1167. PubMed ID: 30933479
    [TBL] [Abstract][Full Text] [Related]  

  • 16. De Novo Design of a Highly Stable Ovoid TIM Barrel: Unlocking Pocket Shape towards Functional Design.
    Chu AE; Fernandez D; Liu J; Eguchi RR; Huang PS
    Biodes Res; 2022; 2022():9842315. PubMed ID: 37850141
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extension of a de novo TIM barrel with a rationally designed secondary structure element.
    Wiese JG; Shanmugaratnam S; Höcker B
    Protein Sci; 2021 May; 30(5):982-989. PubMed ID: 33723882
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metal-chelating non-canonical amino acids in metalloprotein engineering and design.
    Almhjell PJ; Mills JH
    Curr Opin Struct Biol; 2018 Aug; 51():170-176. PubMed ID: 29980106
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural principles for computational and de novo design of 4Fe-4S metalloproteins.
    Nanda V; Senn S; Pike DH; Rodriguez-Granillo A; Hansen WA; Khare SD; Noy D
    Biochim Biophys Acta; 2016 May; 1857(5):531-538. PubMed ID: 26449207
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Apoprotein Structure and Metal Binding Characterization of a de Novo Designed Peptide, α3DIV, that Sequesters Toxic Heavy Metals.
    Plegaria JS; Dzul SP; Zuiderweg ER; Stemmler TL; Pecoraro VL
    Biochemistry; 2015 May; 54(18):2858-73. PubMed ID: 25790102
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.