These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 33203837)

  • 1. Ensemble dimensionality reduction and feature gene extraction for single-cell RNA-seq data.
    Sun X; Liu Y; An L
    Nat Commun; 2020 Nov; 11(1):5853. PubMed ID: 33203837
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Visualization of Single Cell RNA-Seq Data Using t-SNE in R.
    Zhou B; Jin W
    Methods Mol Biol; 2020; 2117():159-167. PubMed ID: 31960377
    [TBL] [Abstract][Full Text] [Related]  

  • 3. TSEE: an elastic embedding method to visualize the dynamic gene expression patterns of time series single-cell RNA sequencing data.
    An S; Ma L; Wan L
    BMC Genomics; 2019 Apr; 20(Suppl 2):224. PubMed ID: 30967106
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep generative model embedding of single-cell RNA-Seq profiles on hyperspheres and hyperbolic spaces.
    Ding J; Regev A
    Nat Commun; 2021 May; 12(1):2554. PubMed ID: 33953202
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spectral clustering of single cells using Siamese nerual network combined with improved affinity matrix.
    Jiang H; Huang Y; Li Q
    Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35419595
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Gene Rank Based Approach for Single Cell Similarity Assessment and Clustering.
    Xu Y; Li HD; Pan Y; Luo F; Wu FX; Wang J
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(2):431-442. PubMed ID: 31369384
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Network embedding-based representation learning for single cell RNA-seq data.
    Li X; Chen W; Chen Y; Zhang X; Gu J; Zhang MQ
    Nucleic Acids Res; 2017 Nov; 45(19):e166. PubMed ID: 28977434
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Supervised application of internal validation measures to benchmark dimensionality reduction methods in scRNA-seq data.
    Koch FC; Sutton GJ; Voineagu I; Vafaee F
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34374742
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dimension Reduction and Clustering Models for Single-Cell RNA Sequencing Data: A Comparative Study.
    Feng C; Liu S; Zhang H; Guan R; Li D; Zhou F; Liang Y; Feng X
    Int J Mol Sci; 2020 Mar; 21(6):. PubMed ID: 32235704
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A topology-preserving dimensionality reduction method for single-cell RNA-seq data using graph autoencoder.
    Luo Z; Xu C; Zhang Z; Jin W
    Sci Rep; 2021 Oct; 11(1):20028. PubMed ID: 34625592
    [TBL] [Abstract][Full Text] [Related]  

  • 11. deepMc: Deep Matrix Completion for Imputation of Single-Cell RNA-seq Data.
    Mongia A; Sengupta D; Majumdar A
    J Comput Biol; 2020 Jul; 27(7):1011-1019. PubMed ID: 31657645
    [TBL] [Abstract][Full Text] [Related]  

  • 12. EnTSSR: A Weighted Ensemble Learning Method to Impute Single-Cell RNA Sequencing Data.
    Lu F; Lin Y; Yuan C; Zhang XF; Ou-Yang L
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(6):2781-2787. PubMed ID: 34495837
    [TBL] [Abstract][Full Text] [Related]  

  • 13. scEM: A New Ensemble Framework for Predicting Cell Type Composition Based on scRNA-Seq Data.
    Cai X; Zhang W; Zheng X; Xu Y; Li Y
    Interdiscip Sci; 2024 Jun; 16(2):304-317. PubMed ID: 38368575
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Machine learning and statistical methods for clustering single-cell RNA-sequencing data.
    Petegrosso R; Li Z; Kuang R
    Brief Bioinform; 2020 Jul; 21(4):1209-1223. PubMed ID: 31243426
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selecting gene features for unsupervised analysis of single-cell gene expression data.
    Sheng J; Li WV
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34351383
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dimensionality Reduction of Single-Cell RNA-Seq Data.
    Linderman GC
    Methods Mol Biol; 2021; 2284():331-342. PubMed ID: 33835451
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fast interpolation-based t-SNE for improved visualization of single-cell RNA-seq data.
    Linderman GC; Rachh M; Hoskins JG; Steinerberger S; Kluger Y
    Nat Methods; 2019 Mar; 16(3):243-245. PubMed ID: 30742040
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single-Cell RNA Sequencing Data Interpretation by Evolutionary Multiobjective Clustering.
    Li X; Wong KC
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(5):1773-1784. PubMed ID: 30908236
    [TBL] [Abstract][Full Text] [Related]  

  • 19. FastProject: a tool for low-dimensional analysis of single-cell RNA-Seq data.
    DeTomaso D; Yosef N
    BMC Bioinformatics; 2016 Aug; 17(1):315. PubMed ID: 27553427
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transfer learning for clustering single-cell RNA-seq data crossing-species and batch, case on uterine fibroids.
    Wang YM; Sun Y; Wang B; Wu Z; He XY; Zhao Y
    Brief Bioinform; 2023 Nov; 25(1):. PubMed ID: 37991248
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.