These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 33203973)

  • 1. Operant conditioning of motor cortex neurons reveals neuron-subtype-specific responses in a brain-machine interface task.
    Garcia-Garcia MG; Marquez-Chin C; Popovic MR
    Sci Rep; 2020 Nov; 10(1):19992. PubMed ID: 33203973
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Operant conditioning reveals task-specific responses of single neurons in a brain-machine interface.
    Garcia-Garcia MG; Marquez-Chin C; Popovic MR
    J Neural Eng; 2021 Mar; 18(4):. PubMed ID: 33721847
    [No Abstract]   [Full Text] [Related]  

  • 3. Neuron-Type-Specific Utility in a Brain-Machine Interface: a Pilot Study.
    Garcia-Garcia MG; Bergquist AJ; Vargas-Perez H; Nagai MK; Zariffa J; Marquez-Chin C; Popovic MR
    J Spinal Cord Med; 2017 Nov; 40(6):715-722. PubMed ID: 28899231
    [TBL] [Abstract][Full Text] [Related]  

  • 4. "Master" neurons induced by operant conditioning in rat motor cortex during a brain-machine interface task.
    Arduin PJ; Frégnac Y; Shulz DE; Ego-Stengel V
    J Neurosci; 2013 May; 33(19):8308-20. PubMed ID: 23658171
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reward-timing-dependent bidirectional modulation of cortical microcircuits during optical single-neuron operant conditioning.
    Hira R; Ohkubo F; Masamizu Y; Ohkura M; Nakai J; Okada T; Matsuzaki M
    Nat Commun; 2014 Nov; 5():5551. PubMed ID: 25418042
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Operant conditioning of neural activity in freely behaving monkeys with intracranial reinforcement.
    Eaton RW; Libey T; Fetz EE
    J Neurophysiol; 2017 Mar; 117(3):1112-1125. PubMed ID: 28031396
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Large-scale analysis reveals populational contributions of cortical spike rate and synchrony to behavioural functions.
    Kimura R; Saiki A; Fujiwara-Tsukamoto Y; Sakai Y; Isomura Y
    J Physiol; 2017 Jan; 595(1):385-413. PubMed ID: 27488936
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reinforcement schedules differentially affect learning in neuronal operant conditioning in rats.
    Song K; Takahashi S; Sakurai Y
    Neurosci Res; 2020 Apr; 153():62-67. PubMed ID: 31002837
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conditioned enhancement of firing rates and synchrony of hippocampal neurons and firing rates of motor cortical neurons in rats.
    Sakurai Y; Takahashi S
    Eur J Neurosci; 2013 Feb; 37(4):623-39. PubMed ID: 23205876
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Timescales of Local and Cross-Area Interactions during Neuroprosthetic Learning.
    Derosier K; Veuthey TL; Ganguly K
    J Neurosci; 2021 Dec; 41(49):10120-10129. PubMed ID: 34732522
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Background firing rates of orbitofrontal neurons reflect specific characteristics of operant sessions and modulate phasic responses to reward-associated cues and behavior.
    Kravitz AV; Peoples LL
    J Neurosci; 2008 Jan; 28(4):1009-18. PubMed ID: 18216208
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid Integration of Artificial Sensory Feedback during Operant Conditioning of Motor Cortex Neurons.
    Prsa M; Galiñanes GL; Huber D
    Neuron; 2017 Feb; 93(4):929-939.e6. PubMed ID: 28231470
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-reorganization of neuronal activation patterns in the cortex under brain-machine interface and neural operant conditioning.
    Ito H; Fujiki S; Mori Y; Kansaku K
    Neurosci Res; 2020 Jul; 156():279-292. PubMed ID: 32243900
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Emergent coordination underlying learning to reach to grasp with a brain-machine interface.
    Vaidya M; Balasubramanian K; Southerland J; Badreldin I; Eleryan A; Shattuck K; Gururangan S; Slutzky M; Osborne L; Fagg A; Oweiss K; Hatsopoulos NG
    J Neurophysiol; 2018 Apr; 119(4):1291-1304. PubMed ID: 29357477
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inducing γ oscillations and precise spike synchrony by operant conditioning via brain-machine interface.
    Engelhard B; Ozeri N; Israel Z; Bergman H; Vaadia E
    Neuron; 2013 Jan; 77(2):361-75. PubMed ID: 23352171
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Volitional control of individual neurons in the human brain.
    Patel K; Katz CN; Kalia SK; Popovic MR; Valiante TA
    Brain; 2021 Dec; 144(12):3651-3663. PubMed ID: 34623400
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adenosine A
    Zhang L; Zhou Y; Liu C; Zheng W; Yao Z; Wang Q; Jin Y; Zhang S; Chen W; Chen JF
    Neuropharmacology; 2020 Nov; 178():108250. PubMed ID: 32726599
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Appearance of functional connections between neurons resulting from changes in the frequency of their spike activity during the performance by animals of conditioned-reflex food-procuring responses.
    Bogdanov AV; Galashina AG
    Neurosci Behav Physiol; 1997; 27(2):97-104. PubMed ID: 9168477
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Motor Cortex Is Involved in the Generation of Classically Conditioned Eyelid Responses in Behaving Rabbits.
    Ammann C; Márquez-Ruiz J; Gómez-Climent MÁ; Delgado-García JM; Gruart A
    J Neurosci; 2016 Jun; 36(26):6988-7001. PubMed ID: 27358456
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Cognition-Related Neural Oscillation Pattern, Generated in the Prelimbic Cortex, Can Control Operant Learning in Rats.
    Hernández-González S; Andreu-Sánchez C; Martín-Pascual MÁ; Gruart A; Delgado-García JM
    J Neurosci; 2017 Jun; 37(24):5923-5935. PubMed ID: 28536269
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.