BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 33205301)

  • 1. Monitoring peptide tyrosine nitration by spectroscopic methods.
    Niederhafner P; Šafařík M; Neburková J; Keiderling TA; Bouř P; Šebestík J
    Amino Acids; 2021 Apr; 53(4):517-532. PubMed ID: 33205301
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photochemical synthesis of pink silver and its use for monitoring peptide nitration via surface enhanced Raman spectroscopy (SERS).
    Sokolová M; Šestáková H; Truksa M; Šafařík M; Hadravová R; Bouř P; Šebestík J
    Amino Acids; 2022 Sep; 54(9):1261-1274. PubMed ID: 35731286
    [TBL] [Abstract][Full Text] [Related]  

  • 3. α-Synuclein conformations followed by vibrational optical activity. Simulation and understanding of the spectra.
    Kurochka A; Průša J; Kessler J; Kapitán J; Bouř P
    Phys Chem Chem Phys; 2021 Aug; 23(31):16635-16645. PubMed ID: 34323256
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification and relative quantification of tyrosine nitration in a model peptide using two-dimensional infrared spectroscopy.
    Rezende Valim L; Davies JA; Tveen Jensen K; Guo R; Willison KR; Spickett CM; Pitt AR; Klug DR
    J Phys Chem B; 2014 Nov; 118(45):12855-64. PubMed ID: 25347525
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Infrared, vibrational circular dichroism, and Raman spectral simulations for β-sheet structures with various isotopic labels, interstrand, and stacking arrangements using density functional theory.
    Welch WR; Kubelka J; Keiderling TA
    J Phys Chem B; 2013 Sep; 117(36):10343-58. PubMed ID: 23924300
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecules-in-molecules fragment-based method for the calculation of chiroptical spectra of large molecules: Vibrational circular dichroism and Raman optical activity spectra of alanine polypeptides.
    Jose KV; Raghavachari K
    Chirality; 2016 Dec; 28(12):755-768. PubMed ID: 27897329
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simulated IR, isotropic and anisotropic Raman, and vibrational circular dichroism amide I band profiles of stacked β-sheets.
    Schweitzer-Stenner R
    J Phys Chem B; 2012 Apr; 116(14):4141-53. PubMed ID: 22390232
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct calculations of vibrational absorption and circular dichroism spectra of alanine dipeptide analog in water: quantum mechanical/molecular mechanical molecular dynamics simulations.
    Yang S; Cho M
    J Chem Phys; 2009 Oct; 131(13):135102. PubMed ID: 19814574
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vibrational circular dichroism as a probe of fibrillogenesis: the origin of the anomalous intensity enhancement of amyloid-like fibrils.
    Measey TJ; Schweitzer-Stenner R
    J Am Chem Soc; 2011 Feb; 133(4):1066-76. PubMed ID: 21186804
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure of Condensed Phase Peptides: Insights from Vibrational Circular Dichroism and Raman Optical Activity Techniques.
    Keiderling TA
    Chem Rev; 2020 Apr; 120(7):3381-3419. PubMed ID: 32101406
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electronic and vibrational circular dichroism of aromatic amino acids by density functional theory.
    Tanaka T; Kodama TS; Morita HE; Ohno T
    Chirality; 2006 Aug; 18(8):652-61. PubMed ID: 16736539
    [TBL] [Abstract][Full Text] [Related]  

  • 12. VCD studies on cyclic peptides assembled from L-α-amino acids and a trans-2-aminocyclopentane- or trans-2-aminocyclohexane carboxylic acid.
    Vass E; Strijowski U; Wollschläger K; Mándity IM; Szilvágyi G; Jewgiński M; Gaus K; Royo S; Majer Z; Sewald N; Hollósi M
    J Pept Sci; 2010 Nov; 16(11):613-20. PubMed ID: 20848613
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental and theoretical spectroscopic study of 3(10)-helical peptides using isotopic labeling to evaluate vibrational coupling.
    Lakhani A; Roy A; De Poli M; Nakaema M; Formaggio F; Toniolo C; Keiderling TA
    J Phys Chem B; 2011 May; 115(19):6252-64. PubMed ID: 21500779
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Raman spectroscopic characterization of secondary structure in natively unfolded proteins: alpha-synuclein.
    Maiti NC; Apetri MM; Zagorski MG; Carey PR; Anderson VE
    J Am Chem Soc; 2004 Mar; 126(8):2399-408. PubMed ID: 14982446
    [TBL] [Abstract][Full Text] [Related]  

  • 15. VCD spectroscopic and molecular dynamics analysis of the Trp-cage miniprotein TC5b.
    Copps J; Murphy RF; Lovas S
    Biopolymers; 2007; 88(3):427-37. PubMed ID: 17326200
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Theoretical calculation (DFT), Raman and surface-enhanced Raman scattering (SERS) study of ponceau 4R.
    Xie Y; Li Y; Sun Y; Wang H; Qian H; Yao W
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Oct; 96():600-4. PubMed ID: 22868331
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spectroscopic properties of the nonplanar amide group: a computational study.
    Bednárová L; Malon P; Bour P
    Chirality; 2007 Nov; 19(10):775-86. PubMed ID: 17687760
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Raman optical activity of tetra-alanine in the poly(l-proline) II type peptide conformation.
    Furuta M; Fujisawa T; Urago H; Eguchi T; Shingae T; Takahashi S; Blanch EW; Unno M
    Phys Chem Chem Phys; 2017 Jan; 19(3):2078-2086. PubMed ID: 28045149
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three types of induced tryptophan optical activity compared in model dipeptides: theory and experiment.
    Hudecová J; Horníček J; Buděšínský M; Šebestík J; Šafařík M; Zhang G; Keiderling TA; Bouř P
    Chemphyschem; 2012 Aug; 13(11):2748-60. PubMed ID: 22706803
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure analysis of unfolded peptides I: vibrational circular dichroism spectroscopy.
    Schweitzer-Stenner R; Soffer JB; Verbaro D
    Methods Mol Biol; 2012; 895():271-313. PubMed ID: 22760325
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.