BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

336 related articles for article (PubMed ID: 33205555)

  • 1. Spatial organization and crosstalk of vimentin and actin stress fibers regulate the osteogenic differentiation of human adipose-derived stem cells.
    Fan T; Qu R; Jiang X; Yang Y; Sun B; Huang X; Zhou Z; Ouyang J; Zhong S; Dai J
    FASEB J; 2021 Feb; 35(2):e21175. PubMed ID: 33205555
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Substrate elasticity regulates adipose-derived stromal cell differentiation towards osteogenesis and adipogenesis through β-catenin transduction.
    Xie J; Zhang D; Zhou C; Yuan Q; Ye L; Zhou X
    Acta Biomater; 2018 Oct; 79():83-95. PubMed ID: 30134207
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A signal-amplification circuit between miR-218 and Wnt/β-catenin signal promotes human adipose tissue-derived stem cells osteogenic differentiation.
    Zhang WB; Zhong WJ; Wang L
    Bone; 2014 Jan; 58():59-66. PubMed ID: 24091133
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Actin polymerization state regulates osteogenic differentiation in human adipose-derived stem cells.
    Sun B; Qu R; Fan T; Yang Y; Jiang X; Khan AU; Zhou Z; Zhang J; Wei K; Ouyang J; Dai J
    Cell Mol Biol Lett; 2021 Apr; 26(1):15. PubMed ID: 33858321
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vimentin intermediate filaments control actin stress fiber assembly through GEF-H1 and RhoA.
    Jiu Y; Peränen J; Schaible N; Cheng F; Eriksson JE; Krishnan R; Lappalainen P
    J Cell Sci; 2017 Mar; 130(5):892-902. PubMed ID: 28096473
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vimentin intermediate filaments and filamentous actin form unexpected interpenetrating networks that redefine the cell cortex.
    Wu H; Shen Y; Sivagurunathan S; Weber MS; Adam SA; Shin JH; Fredberg JJ; Medalia O; Goldman R; Weitz DA
    Proc Natl Acad Sci U S A; 2022 Mar; 119(10):e2115217119. PubMed ID: 35235449
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dissecting the contribution of actin and vimentin intermediate filaments to mechanical phenotype of suspended cells using high-throughput deformability measurements and computational modeling.
    Gladilin E; Gonzalez P; Eils R
    J Biomech; 2014 Aug; 47(11):2598-605. PubMed ID: 24952458
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Immunofluorescence studies of the cytoskeletal and contractile elements in cultured human trabecular cells.
    Tamura M; Iwamoto Y; Nakatsuka K; Yamanouchi U
    Jpn J Ophthalmol; 1989; 33(1):95-102. PubMed ID: 2659860
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Correlation between ECM guidance and actin polymerization on osteogenic differentiation of human adipose-derived stem cells.
    Keller V; Deiwick A; Pflaum M; Schlie-Wolter S
    Exp Cell Res; 2016 Oct; 347(2):339-49. PubMed ID: 27590529
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bidirectional Interplay between Vimentin Intermediate Filaments and Contractile Actin Stress Fibers.
    Jiu Y; Lehtimäki J; Tojkander S; Cheng F; Jäälinoja H; Liu X; Varjosalo M; Eriksson JE; Lappalainen P
    Cell Rep; 2015 Jun; 11(10):1511-8. PubMed ID: 26027931
    [TBL] [Abstract][Full Text] [Related]  

  • 11. HSPB7 regulates osteogenic differentiation of human adipose derived stem cells via ERK signaling pathway.
    Jin C; Shuai T; Tang Z
    Stem Cell Res Ther; 2020 Oct; 11(1):450. PubMed ID: 33097082
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel interaction of the Golgi complex with the vimentin intermediate filament cytoskeleton.
    Gao Y; Sztul E
    J Cell Biol; 2001 Mar; 152(5):877-94. PubMed ID: 11238446
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Human adipose-derived adult stem cells upregulate palladin during osteogenesis and in response to cyclic tensile strain.
    Wall ME; Rachlin A; Otey CA; Loboa EG
    Am J Physiol Cell Physiol; 2007 Nov; 293(5):C1532-8. PubMed ID: 17687002
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simvastatin enhances Rho/actin/cell rigidity pathway contributing to mesenchymal stem cells' osteogenic differentiation.
    Tai IC; Wang YH; Chen CH; Chuang SC; Chang JK; Ho ML
    Int J Nanomedicine; 2015; 10():5881-94. PubMed ID: 26451103
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Actin filament organization regulates the induction of lens cell differentiation and survival.
    Weber GF; Menko AS
    Dev Biol; 2006 Jul; 295(2):714-29. PubMed ID: 16678812
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cytoskeletal organization of human mesenchymal stem cells (MSC) changes during their osteogenic differentiation.
    Rodríguez JP; González M; Ríos S; Cambiazo V
    J Cell Biochem; 2004 Nov; 93(4):721-31. PubMed ID: 15660416
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction of the NG2 proteoglycan with the actin cytoskeleton.
    Lin XH; Dahlin-Huppe K; Stallcup WB
    J Cell Biochem; 1996 Dec; 63(4):463-77. PubMed ID: 8978462
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Promotion Effects of miR-375 on the Osteogenic Differentiation of Human Adipose-Derived Mesenchymal Stem Cells.
    Chen S; Zheng Y; Zhang S; Jia L; Zhou Y
    Stem Cell Reports; 2017 Mar; 8(3):773-786. PubMed ID: 28262546
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of nano-structured bioceramic surface on osteogenic differentiation of adipose derived stem cells.
    Xia L; Lin K; Jiang X; Fang B; Xu Y; Liu J; Zeng D; Zhang M; Zhang X; Chang J; Zhang Z
    Biomaterials; 2014 Oct; 35(30):8514-27. PubMed ID: 25002263
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Connective tissue growth factor in regulation of RhoA mediated cytoskeletal tension associated osteogenesis of mouse adipose-derived stromal cells.
    Xu Y; Wagner DR; Bekerman E; Chiou M; James AW; Carter D; Longaker MT
    PLoS One; 2010 Jun; 5(6):e11279. PubMed ID: 20585662
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.