These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 33205563)

  • 1. New (and Old) Monomers from Biorefineries to Make Polymer Chemistry More Sustainable.
    Al-Naji M; Schlaad H; Antonietti M
    Macromol Rapid Commun; 2021 Feb; 42(3):e2000485. PubMed ID: 33205563
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A sustainable wood biorefinery for low-carbon footprint chemicals production.
    Liao Y; Koelewijn SF; Van den Bossche G; Van Aelst J; Van den Bosch S; Renders T; Navare K; Nicolaï T; Van Aelst K; Maesen M; Matsushima H; Thevelein JM; Van Acker K; Lagrain B; Verboekend D; Sels BF
    Science; 2020 Mar; 367(6484):1385-1390. PubMed ID: 32054697
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biofuels and biomass-to-liquid fuels in the biorefinery: catalytic conversion of lignocellulosic biomass using porous materials.
    Stöcker M
    Angew Chem Int Ed Engl; 2008; 47(48):9200-11. PubMed ID: 18937235
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic engineering strategies for consolidated production of lactic acid from lignocellulosic biomass.
    Mazzoli R
    Biotechnol Appl Biochem; 2020 Jan; 67(1):61-72. PubMed ID: 31814156
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Advances in catalytic production of bio-based polyester monomer 2,5-furandicarboxylic acid derived from lignocellulosic biomass.
    Zhang J; Li J; Tang Y; Lin L; Long M
    Carbohydr Polym; 2015 Oct; 130():420-8. PubMed ID: 26076643
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cascade Production of Lactic Acid from Universal Types of Sugars Catalyzed by Lanthanum Triflate.
    Liu D; Kim KH; Sun J; Simmons BA; Singh S
    ChemSusChem; 2018 Feb; 11(3):598-604. PubMed ID: 29178399
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of γ-Valerolactone from Carbohydrates and its Applications.
    Zhang Z
    ChemSusChem; 2016 Jan; 9(2):156-71. PubMed ID: 26733161
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 2G waste lignin to fuel and high value-added chemicals: Approaches, challenges and future outlook for sustainable development.
    Sivagurunathan P; Raj T; Mohanta CS; Semwal S; Satlewal A; Gupta RP; Puri SK; Ramakumar SSV; Kumar R
    Chemosphere; 2021 Apr; 268():129326. PubMed ID: 33360003
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent Advances in Carboxylation of Furoic Acid into 2,5-Furandicarboxylic Acid: Pathways towards Bio-Based Polymers.
    Drault F; Snoussi Y; Paul S; Itabaiana I; Wojcieszak R
    ChemSusChem; 2020 Oct; 13(19):5164-5172. PubMed ID: 32725856
    [TBL] [Abstract][Full Text] [Related]  

  • 10. From lignocellulosic biomass to lactic- and glycolic-acid oligomers: a gram-scale microwave-assisted protocol.
    Carnaroglio D; Tabasso S; Kwasek B; Bogdal D; Gaudino EC; Cravotto G
    ChemSusChem; 2015 Apr; 8(8):1342-9. PubMed ID: 25644623
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sustainable Continuous Flow Valorization of γ-Valerolactone with Trioxane to α-Methylene-γ-Valerolactone over Basic Beta Zeolites.
    Al-Naji M; Puértolas B; Kumru B; Cruz D; Bäumel M; Schmidt BVKJ; Tarakina NV; Pérez-Ramírez J
    ChemSusChem; 2019 Jun; 12(12):2628-2636. PubMed ID: 30994965
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hemp hurds biorefining: A path to green L-(+)-lactic acid production.
    Gandolfi S; Pistone L; Ottolina G; Xu P; Riva S
    Bioresour Technol; 2015 Sep; 191():59-65. PubMed ID: 25983223
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Levulinic Acid Biorefineries: New Challenges for Efficient Utilization of Biomass.
    Pileidis FD; Titirici MM
    ChemSusChem; 2016 Mar; 9(6):562-82. PubMed ID: 26847212
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Redefining biorefinery: the search for unconventional building blocks for materials.
    Esposito D; Antonietti M
    Chem Soc Rev; 2015 Aug; 44(16):5821-35. PubMed ID: 25907306
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Current Pretreatment Technologies for the Development of Cellulosic Ethanol and Biorefineries.
    Silveira MH; Morais AR; da Costa Lopes AM; Olekszyszen DN; Bogel-Łukasik R; Andreaus J; Pereira Ramos L
    ChemSusChem; 2015 Oct; 8(20):3366-90. PubMed ID: 26365899
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Catalytic Upgrading of Lignocellulosic Biomass Sugars Toward Biofuel 5-Ethoxymethylfurfural.
    Liu X; Yu D; Luo H; Li C
    Front Chem; 2021; 9():831102. PubMed ID: 35174143
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Renewability is not Enough: Recent Advances in the Sustainable Synthesis of Biomass-Derived Monomers and Polymers.
    Llevot A; Dannecker PK; von Czapiewski M; Over LC; Söyler Z; Meier MA
    Chemistry; 2016 Aug; 22(33):11510-21. PubMed ID: 27355829
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sustainability metrics of pretreatment processes in a waste derived lignocellulosic biomass biorefinery.
    Islam MK; Wang H; Rehman S; Dong C; Hsu HY; Lin CSK; Leu SY
    Bioresour Technol; 2020 Feb; 298():122558. PubMed ID: 31862395
    [TBL] [Abstract][Full Text] [Related]  

  • 19. One-Pot Catalysis: A Privileged Approach for Sustainable Polymers?
    Upitak K; Thomas CM
    Acc Chem Res; 2022 Aug; 55(16):2168-2179. PubMed ID: 35881825
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Marine plant-based biorefinery for sustainable 2,5-furandicarboxylic acid production: A review.
    Heo JB; Lee YS; Chung CH
    Bioresour Technol; 2023 Dec; 390():129817. PubMed ID: 37839644
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.