These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

507 related articles for article (PubMed ID: 33205591)

  • 1. Machine learning vs. conventional statistical models for predicting heart failure readmission and mortality.
    Shin S; Austin PC; Ross HJ; Abdel-Qadir H; Freitas C; Tomlinson G; Chicco D; Mahendiran M; Lawler PR; Billia F; Gramolini A; Epelman S; Wang B; Lee DS
    ESC Heart Fail; 2021 Feb; 8(1):106-115. PubMed ID: 33205591
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Machine Learning Compared With Conventional Statistical Models for Predicting Myocardial Infarction Readmission and Mortality: A Systematic Review.
    Cho SM; Austin PC; Ross HJ; Abdel-Qadir H; Chicco D; Tomlinson G; Taheri C; Foroutan F; Lawler PR; Billia F; Gramolini A; Epelman S; Wang B; Lee DS
    Can J Cardiol; 2021 Aug; 37(8):1207-1214. PubMed ID: 33677098
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of machine learning and conventional statistical modeling for predicting readmission following acute heart failure hospitalization.
    Abdul-Samad K; Ma S; Austin DE; Chong A; Wang CX; Wang X; Austin PC; Ross HJ; Wang B; Lee DS
    Am Heart J; 2024 Nov; 277():93-103. PubMed ID: 39094840
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of machine learning in predicting hospital readmissions: a scoping review of the literature.
    Huang Y; Talwar A; Chatterjee S; Aparasu RR
    BMC Med Res Methodol; 2021 May; 21(1):96. PubMed ID: 33952192
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of Machine Learning Techniques for Heart Failure Readmissions.
    Mortazavi BJ; Downing NS; Bucholz EM; Dharmarajan K; Manhapra A; Li SX; Negahban SN; Krumholz HM
    Circ Cardiovasc Qual Outcomes; 2016 Nov; 9(6):629-640. PubMed ID: 28263938
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Price of Explainability in Machine Learning Models for 100-Day Readmission Prediction in Heart Failure: Retrospective, Comparative, Machine Learning Study.
    Soliman A; Agvall B; Etminani K; Hamed O; Lingman M
    J Med Internet Res; 2023 Oct; 25():e46934. PubMed ID: 37889530
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Machine learning models for diabetes management in acute care using electronic medical records: A systematic review.
    Kamel Rahimi A; Canfell OJ; Chan W; Sly B; Pole JD; Sullivan C; Shrapnel S
    Int J Med Inform; 2022 Apr; 162():104758. PubMed ID: 35398812
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Machine learning-based prediction of heart failure readmission or death: implications of choosing the right model and the right metrics.
    Awan SE; Bennamoun M; Sohel F; Sanfilippo FM; Dwivedi G
    ESC Heart Fail; 2019 Apr; 6(2):428-435. PubMed ID: 30810291
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of Machine Learning Methods With Traditional Models for Use of Administrative Claims With Electronic Medical Records to Predict Heart Failure Outcomes.
    Desai RJ; Wang SV; Vaduganathan M; Evers T; Schneeweiss S
    JAMA Netw Open; 2020 Jan; 3(1):e1918962. PubMed ID: 31922560
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of 30-Day All-Cause Readmissions in Patients Hospitalized for Heart Failure: Comparison of Machine Learning and Other Statistical Approaches.
    Frizzell JD; Liang L; Schulte PJ; Yancy CW; Heidenreich PA; Hernandez AF; Bhatt DL; Fonarow GC; Laskey WK
    JAMA Cardiol; 2017 Feb; 2(2):204-209. PubMed ID: 27784047
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PREDICTIVE MODELING OF HOSPITAL READMISSION RATES USING ELECTRONIC MEDICAL RECORD-WIDE MACHINE LEARNING: A CASE-STUDY USING MOUNT SINAI HEART FAILURE COHORT.
    Shameer K; Johnson KW; Yahi A; Miotto R; Li LI; Ricks D; Jebakaran J; Kovatch P; Sengupta PP; Gelijns S; Moskovitz A; Darrow B; David DL; Kasarskis A; Tatonetti NP; Pinney S; Dudley JT
    Pac Symp Biocomput; 2017; 22():276-287. PubMed ID: 27896982
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Beyond the black stump: rapid reviews of health research issues affecting regional, rural and remote Australia.
    Osborne SR; Alston LV; Bolton KA; Whelan J; Reeve E; Wong Shee A; Browne J; Walker T; Versace VL; Allender S; Nichols M; Backholer K; Goodwin N; Lewis S; Dalton H; Prael G; Curtin M; Brooks R; Verdon S; Crockett J; Hodgins G; Walsh S; Lyle DM; Thompson SC; Browne LJ; Knight S; Pit SW; Jones M; Gillam MH; Leach MJ; Gonzalez-Chica DA; Muyambi K; Eshetie T; Tran K; May E; Lieschke G; Parker V; Smith A; Hayes C; Dunlop AJ; Rajappa H; White R; Oakley P; Holliday S
    Med J Aust; 2020 Dec; 213 Suppl 11():S3-S32.e1. PubMed ID: 33314144
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Machine Learning-Based Models Incorporating Social Determinants of Health vs Traditional Models for Predicting In-Hospital Mortality in Patients With Heart Failure.
    Segar MW; Hall JL; Jhund PS; Powell-Wiley TM; Morris AA; Kao D; Fonarow GC; Hernandez R; Ibrahim NE; Rutan C; Navar AM; Stevens LM; Pandey A
    JAMA Cardiol; 2022 Aug; 7(8):844-854. PubMed ID: 35793094
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting 90 day acute heart failure readmission and death using machine learning-supported decision analysis.
    Sarijaloo F; Park J; Zhong X; Wokhlu A
    Clin Cardiol; 2021 Feb; 44(2):230-237. PubMed ID: 33355945
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prognostic value of patient-reported outcomes in predicting 30 day all-cause readmission among older patients with heart failure.
    Zhang X; Yao Y; Zhang Y; Jiang S; Li X; Wang X; Li Y; Yang W; Zhao Y; Zang X
    ESC Heart Fail; 2022 Oct; 9(5):2840-2850. PubMed ID: 35686326
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Leveraging Machine Learning Techniques to Forecast Patient Prognosis After Percutaneous Coronary Intervention.
    Zack CJ; Senecal C; Kinar Y; Metzger Y; Bar-Sinai Y; Widmer RJ; Lennon R; Singh M; Bell MR; Lerman A; Gulati R
    JACC Cardiovasc Interv; 2019 Jul; 12(14):1304-1311. PubMed ID: 31255564
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Machine learning vs. conventional methods for prediction of 30-day readmission following percutaneous mitral edge-to-edge repair.
    Sulaiman S; Kawsara A; El Sabbagh A; Mahayni AA; Gulati R; Rihal CS; Alkhouli M
    Cardiovasc Revasc Med; 2023 Nov; 56():18-24. PubMed ID: 37248108
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of Machine Learning Algorithms for Predicting Readmission After Acute Myocardial Infarction Using Routinely Collected Clinical Data.
    Gupta S; Ko DT; Azizi P; Bouadjenek MR; Koh M; Chong A; Austin PC; Sanner S
    Can J Cardiol; 2020 Jun; 36(6):878-885. PubMed ID: 32204950
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interpretable Machine Learning Models Using Peripheral Immune Cells to Predict 90-Day Readmission or Mortality in Acute Heart Failure Patients.
    Chen J; Yang L; Han J; Wang L; Wu T; Zhao D
    Clin Appl Thromb Hemost; 2024; 30():10760296241259784. PubMed ID: 38825589
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 26.