These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
507 related articles for article (PubMed ID: 33205591)
21. Mortality and Readmission Following Hospitalisation for Heart Failure in Australia: A Systematic Review and Meta-Analysis. Al-Omary MS; Davies AJ; Evans TJ; Bastian B; Fletcher PJ; Attia J; Boyle AJ Heart Lung Circ; 2018 Aug; 27(8):917-927. PubMed ID: 29519691 [TBL] [Abstract][Full Text] [Related]
22. Predicting Major Adverse Cardiovascular Events in Acute Coronary Syndrome: A Scoping Review of Machine Learning Approaches. Chopannejad S; Sadoughi F; Bagherzadeh R; Shekarchi S Appl Clin Inform; 2022 May; 13(3):720-740. PubMed ID: 35617971 [TBL] [Abstract][Full Text] [Related]
23. Comparing Machine Learning Models and Statistical Models for Predicting Heart Failure Events: A Systematic Review and Meta-Analysis. Sun Z; Dong W; Shi H; Ma H; Cheng L; Huang Z Front Cardiovasc Med; 2022; 9():812276. PubMed ID: 35463786 [TBL] [Abstract][Full Text] [Related]
24. Machine learning-based techniques to improve lung transplantation outcomes and complications: a systematic review. Gholamzadeh M; Abtahi H; Safdari R BMC Med Res Methodol; 2022 Dec; 22(1):331. PubMed ID: 36564710 [TBL] [Abstract][Full Text] [Related]
25. Neural networks versus Logistic regression for 30 days all-cause readmission prediction. Allam A; Nagy M; Thoma G; Krauthammer M Sci Rep; 2019 Jun; 9(1):9277. PubMed ID: 31243311 [TBL] [Abstract][Full Text] [Related]
26. Comparison of machine learning and the regression-based EHMRG model for predicting early mortality in acute heart failure. Austin DE; Lee DS; Wang CX; Ma S; Wang X; Porter J; Wang B Int J Cardiol; 2022 Oct; 365():78-84. PubMed ID: 35868354 [TBL] [Abstract][Full Text] [Related]
27. A systematic review of machine learning models for predicting outcomes of stroke with structured data. Wang W; Kiik M; Peek N; Curcin V; Marshall IJ; Rudd AG; Wang Y; Douiri A; Wolfe CD; Bray B PLoS One; 2020; 15(6):e0234722. PubMed ID: 32530947 [TBL] [Abstract][Full Text] [Related]
28. The Efficacy of Machine Learning Models for Predicting the Prognosis of Heart Failure: A Systematic Review and Meta-Analysis. Xu Z; Hu Y; Shao X; Shi T; Yang J; Wan Q; Liu Y Cardiology; 2024 Apr; ():1-19. PubMed ID: 38648752 [TBL] [Abstract][Full Text] [Related]
29. Prediction models for hospital readmissions in patients with heart disease: a systematic review and meta-analysis. Van Grootven B; Jepma P; Rijpkema C; Verweij L; Leeflang M; Daams J; Deschodt M; Milisen K; Flamaing J; Buurman B BMJ Open; 2021 Aug; 11(8):e047576. PubMed ID: 34404703 [TBL] [Abstract][Full Text] [Related]
30. Statistical models and patient predictors of readmission for heart failure: a systematic review. Ross JS; Mulvey GK; Stauffer B; Patlolla V; Bernheim SM; Keenan PS; Krumholz HM Arch Intern Med; 2008 Jul; 168(13):1371-86. PubMed ID: 18625917 [TBL] [Abstract][Full Text] [Related]
31. Predictive models for hospital readmission risk: A systematic review of methods. Artetxe A; Beristain A; Graña M Comput Methods Programs Biomed; 2018 Oct; 164():49-64. PubMed ID: 30195431 [TBL] [Abstract][Full Text] [Related]
32. Performance of advanced machine learning algorithms overlogistic regression in predicting hospital readmissions: A meta-analysis. Talwar A; Lopez-Olivo MA; Huang Y; Ying L; Aparasu RR Explor Res Clin Soc Pharm; 2023 Sep; 11():100317. PubMed ID: 37662697 [TBL] [Abstract][Full Text] [Related]
34. Machine learning-based 30-day readmission prediction models for patients with heart failure: a systematic review. Yu MY; Son YJ Eur J Cardiovasc Nurs; 2024 Oct; 23(7):711-719. PubMed ID: 38421187 [TBL] [Abstract][Full Text] [Related]
35. Prognostic models for patients suffering a heart failure with a preserved ejection fraction: a systematic review. Jia YY; Cui NQ; Jia TT; Song JP ESC Heart Fail; 2024 Jun; 11(3):1341-1351. PubMed ID: 38318693 [TBL] [Abstract][Full Text] [Related]
36. Predicting population health with machine learning: a scoping review. Morgenstern JD; Buajitti E; O'Neill M; Piggott T; Goel V; Fridman D; Kornas K; Rosella LC BMJ Open; 2020 Oct; 10(10):e037860. PubMed ID: 33109649 [TBL] [Abstract][Full Text] [Related]
37. The future of Cochrane Neonatal. Soll RF; Ovelman C; McGuire W Early Hum Dev; 2020 Nov; 150():105191. PubMed ID: 33036834 [TBL] [Abstract][Full Text] [Related]
38. Use of Multiprognostic Index Domain Scores, Clinical Data, and Machine Learning to Improve 12-Month Mortality Risk Prediction in Older Hospitalized Patients: Prospective Cohort Study. Woodman RJ; Bryant K; Sorich MJ; Pilotto A; Mangoni AA J Med Internet Res; 2021 Jun; 23(6):e26139. PubMed ID: 34152274 [TBL] [Abstract][Full Text] [Related]
39. Transitional care interventions to prevent readmissions for persons with heart failure: a systematic review and meta-analysis. Feltner C; Jones CD; Cené CW; Zheng ZJ; Sueta CA; Coker-Schwimmer EJ; Arvanitis M; Lohr KN; Middleton JC; Jonas DE Ann Intern Med; 2014 Jun; 160(11):774-84. PubMed ID: 24862840 [TBL] [Abstract][Full Text] [Related]
40. UMBRELLA protocol: systematic reviews of multivariable biomarker prognostic models developed to predict clinical outcomes in patients with heart failure. Vazquez-Montes MDLA; Debray TPA; Taylor KS; Speich B; Jones N; Collins GS; Hobbs FDRR; Magriplis E; Maruri-Aguilar H; Moons KGM; Parissis J; Perera R; Roberts N; Taylor CJ; Kadoglou NPE; Trivella M; Diagn Progn Res; 2020; 4():13. PubMed ID: 32864468 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]