BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 33205655)

  • 1. Synthesis of Hemoglobin-Based Oxygen Carrier Nanoparticles By Desolvation Precipitation.
    Hickey R; Palmer AF
    Langmuir; 2020 Dec; 36(47):14166-14172. PubMed ID: 33205655
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ZIF-8 metal organic framework nanoparticle loaded with tense quaternary state polymerized bovine hemoglobin: potential red blood cell substitute with antioxidant properties.
    Gu X; Allyn M; Swindle-Reilly K; Palmer AF
    Nanoscale; 2023 May; 15(19):8832-8844. PubMed ID: 37114464
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent and prominent examples of nano- and microarchitectures as hemoglobin-based oxygen carriers.
    Jansman MMT; Hosta-Rigau L
    Adv Colloid Interface Sci; 2018 Oct; 260():65-84. PubMed ID: 30177214
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tangential flow filtration facilitated fractionation and PEGylation of low and high-molecular weight polymerized hemoglobins and their biophysical properties.
    Gu X; Savla C; Palmer AF
    Biotechnol Bioeng; 2022 Jan; 119(1):176-186. PubMed ID: 34672363
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biophysical properties of tense quaternary state polymerized human hemoglobins bracketed between 500 kDa and 0.2 μm in size.
    Cuddington CT; Wolfe SR; Palmer AF
    Biotechnol Prog; 2022 Jan; 38(1):e3219. PubMed ID: 34626100
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of size distribution and encapsulation efficiency of liposome-encapsulated hemoglobin blood substitutes using asymmetric flow field-flow fractionation coupled with multi-angle static light scattering.
    Arifin DR; Palmer AF
    Biotechnol Prog; 2003; 19(6):1798-811. PubMed ID: 14656159
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photocatalytic Synthesis of a Polydopamine-Coated Acellular Mega-Hemoglobin as a Potential Oxygen Therapeutic with Antioxidant Properties.
    Pozy E; Savla C; Palmer AF
    Biomacromolecules; 2023 May; 24(5):2022-2029. PubMed ID: 37027799
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetic studies on oxygen releasing of HBOC and red blood cells as fluids and factors affecting the process.
    Zhao B; Zhang S; Meng Z; Wang D; Li Q; Guo Y; Li F; Wang X; Yang C
    Artif Cells Nanomed Biotechnol; 2018; 46(sup3):S1076-S1082. PubMed ID: 30449264
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis and characterization of a novel DTPA polymerized hemoglobin based oxygen carrier.
    Haney CR; Buehler PW; Gulati A
    Biochim Biophys Acta; 2005 Oct; 1725(3):358-69. PubMed ID: 16102904
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Present situation of the development of cellular-type hemoglobin-based oxygen carrier (hemoglobin-vesicles).
    Sakai H
    Curr Drug Discov Technol; 2012 Sep; 9(3):188-93. PubMed ID: 21726183
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Scalable production and complete biophysical characterization of poly(ethylene glycol) surface conjugated liposome encapsulated hemoglobin (PEG-LEH).
    Banerjee U; Wolfe S; O'Boyle Q; Cuddington C; Palmer AF
    PLoS One; 2022; 17(7):e0269939. PubMed ID: 35802716
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low-Fouling Electrosprayed Hemoglobin Nanoparticles with Antioxidant Protection as Promising Oxygen Carriers.
    Liu X; Jansman MMT; Thulstrup PW; Mendes AC; Chronakis IS; Hosta-Rigau L
    Macromol Biosci; 2020 Feb; 20(2):e1900293. PubMed ID: 31846219
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crosslinked, polymerized, and PEG-conjugated hemoglobin-based oxygen carriers: clinical safety and efficacy of recent and current products.
    Jahr JS; Akha AS; Holtby RJ
    Curr Drug Discov Technol; 2012 Sep; 9(3):158-65. PubMed ID: 21745179
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of Nanoparticles Fully Made of Hemoglobin with Antioxidant Properties: A Step toward the Creation of Successful Oxygen Carriers.
    Chen J; Jansman MMT; Liu X; Hosta-Rigau L
    Langmuir; 2021 Oct; 37(39):11561-11572. PubMed ID: 34555900
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Increased viscosity of hemoglobin-based oxygen carriers retards NO-binding when perfused through narrow gas-permeable tubes.
    Sakai H; Okuda N; Takeoka S; Tsuchida E
    Microvasc Res; 2011 Mar; 81(2):169-76. PubMed ID: 21167845
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of oxygen affinity and molecular weight of HBOCs on cerebral oxygenation and blood pressure in rats.
    Hare GM; Harrington A; Liu E; Wang JL; Baker AJ; Mazer CD
    Can J Anaesth; 2006 Oct; 53(10):1030-8. PubMed ID: 16987859
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis of bioactive hemoglobin-based oxygen carrier nanoparticles via metal-phenolic complexation.
    Nadimifar M; Jin W; Coll-Satue C; Bor G; Kempen PJ; Moosavi-Movahedi AA; Hosta-Rigau L
    Biomater Adv; 2024 Jan; 156():213698. PubMed ID: 38006785
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxidized mono-, di-, tri-, and polysaccharides as potential hemoglobin cross-linking reagents for the synthesis of high oxygen affinity artificial blood substitutes.
    Eike JH; Palmer AF
    Biotechnol Prog; 2004; 20(3):953-62. PubMed ID: 15176904
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly loaded hemoglobin spheres as promising artificial oxygen carriers.
    Duan L; Yan X; Wang A; Jia Y; Li J
    ACS Nano; 2012 Aug; 6(8):6897-904. PubMed ID: 22732258
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel liposome-encapsulated hemoglobin/silica nanoparticle as an oxygen carrier.
    Liu M; Gan L; Chen L; Zhu D; Xu Z; Hao Z; Chen L
    Int J Pharm; 2012 May; 427(2):354-7. PubMed ID: 22348875
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.