These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 33205957)

  • 21. Use of Soft Electrodes in Capacitive Deionization of Solutions.
    Ahualli S; Iglesias GR; Fernández MM; Jiménez ML; Delgado ÁV
    Environ Sci Technol; 2017 May; 51(9):5326-5333. PubMed ID: 28368580
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The influences of separators on capacitive deionization systems in the cycle of adsorption and desorption.
    Yao Q; Shi Z; Liu Q; Gu Z; Ning R
    Environ Sci Pollut Res Int; 2018 Feb; 25(4):3313-3319. PubMed ID: 29149445
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Improvement of desalination efficiency in capacitive deionization using a carbon electrode coated with an ion-exchange polymer.
    Kim YJ; Choi JH
    Water Res; 2010 Feb; 44(3):990-6. PubMed ID: 19896691
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Charge and Potential Balancing for Optimized Capacitive Deionization Using Lignin-Derived, Low-Cost Activated Carbon Electrodes.
    Zornitta RL; Srimuk P; Lee J; Krüner B; Aslan M; Ruotolo LAM; Presser V
    ChemSusChem; 2018 Jul; 11(13):2101-2113. PubMed ID: 29710382
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nitrogen-enriched micro-mesoporous carbon derived from polymers organic frameworks for high-performance capacitive deionization.
    Zhang J; Ning XA; Li D; Wang Y; Lai X; Ou W
    J Environ Sci (China); 2022 Jan; 111():282-291. PubMed ID: 34949358
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ion Removal Performance, Structural/Compositional Dynamics, and Electrochemical Stability of Layered Manganese Oxide Electrodes in Hybrid Capacitive Deionization.
    Byles BW; Hayes-Oberst B; Pomerantseva E
    ACS Appl Mater Interfaces; 2018 Sep; 10(38):32313-32322. PubMed ID: 30182718
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Starch Derived Porous Carbon Nanosheets for High-Performance Photovoltaic Capacitive Deionization.
    Wu T; Wang G; Dong Q; Zhan F; Zhang X; Li S; Qiao H; Qiu J
    Environ Sci Technol; 2017 Aug; 51(16):9244-9251. PubMed ID: 28700208
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Complementary surface charge for enhanced capacitive deionization.
    Gao X; Porada S; Omosebi A; Liu KL; Biesheuvel PM; Landon J
    Water Res; 2016 Apr; 92():275-82. PubMed ID: 26878361
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Efficient Capacitive Deionization Using Natural Basswood-Derived, Freestanding, Hierarchically Porous Carbon Electrodes.
    Liu M; Xu M; Xue Y; Ni W; Huo S; Wu L; Yang Z; Yan YM
    ACS Appl Mater Interfaces; 2018 Sep; 10(37):31260-31270. PubMed ID: 30141323
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Flow-Electrode Capacitive Deionization Using an Aqueous Electrolyte with a High Salt Concentration.
    Yang S; Choi J; Yeo JG; Jeon SI; Park HR; Kim DK
    Environ Sci Technol; 2016 Jun; 50(11):5892-9. PubMed ID: 27162028
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Single-Walled Carbon Nanotube (SWCNT) Loaded Porous Reticulated Vitreous Carbon (RVC) Electrodes Used in a Capacitive Deionization (CDI) Cell for Effective Desalination.
    Aldalbahi A; Rahaman M; Almoiqli M; Hamedelniel A; Alrehaili A
    Nanomaterials (Basel); 2018 Jul; 8(7):. PubMed ID: 30011849
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Pseudocapacitive Behaviors of Polypyrrole Grafted Activated Carbon and MnO
    Tan G; Lu S; Xu N; Gao D; Zhu X
    Environ Sci Technol; 2020 May; 54(9):5843-5852. PubMed ID: 32243751
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electron Transfer of Activated Carbon to Anode Excites and Regulates Desalination in Flow Electrode Capacitive Deionization.
    Wang T; Zhang Z; Gu Z; Hu C; Qu J
    Environ Sci Technol; 2023 Feb; 57(6):2566-2574. PubMed ID: 36719078
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Adsorption-capacitive deionization hybrid system with activated carbon of modified potential of zero charge.
    Sufiani O; Elisadiki J; Tanaka H; Teshima K; Sahini MG; Machunda RL; Jande YAC
    Environ Res; 2023 Feb; 219():115114. PubMed ID: 36574800
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Exploring the impact of pore size distribution on the performance of carbon electrodes for capacitive deionization.
    Han L; Karthikeyan KG; Anderson MA; Gregory KB
    J Colloid Interface Sci; 2014 Sep; 430():93-9. PubMed ID: 24998059
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characterizing the Impacts of Deposition Techniques on the Performance of MnO
    Hand S; Cusick RD
    Environ Sci Technol; 2017 Oct; 51(20):12027-12034. PubMed ID: 28902989
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Selectivity adsorption of sulfate by amino-modified activated carbon during capacitive deionization.
    Chen X; Deng W; Miao L; Gao M; Ao T; Chen W; Ueyama T; Dai Q
    Environ Technol; 2023 Apr; 44(10):1505-1517. PubMed ID: 34762018
    [No Abstract]   [Full Text] [Related]  

  • 38. Facile synthesis of TiO
    Yasin AS; Mohamed IMA; Mousa HM; Park CH; Kim CS
    Sci Rep; 2018 Jan; 8(1):541. PubMed ID: 29323229
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Selective adsorption of phosphate by carboxyl-modified activated carbon electrodes for capacitive deionization.
    Miao L; Deng W; Chen X; Gao M; Chen W; Ao T
    Water Sci Technol; 2021 Oct; 84(7):1757-1773. PubMed ID: 34662311
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enhanced Desalination Performance of Capacitive Deionization Using Nanoporous Carbon Derived from ZIF-67 Metal Organic Frameworks and CNTs.
    Phuoc NM; Jung E; Tran NAT; Lee YW; Yoo CY; Kang BG; Cho Y
    Nanomaterials (Basel); 2020 Oct; 10(11):. PubMed ID: 33105663
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.