These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 33205961)

  • 1. Microkinetic Modeling: A Tool for Rational Catalyst Design.
    Motagamwala AH; Dumesic JA
    Chem Rev; 2021 Jan; 121(2):1049-1076. PubMed ID: 33205961
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microkinetic Analysis and Scaling Relations for Catalyst Design.
    Motagamwala AH; Ball MR; Dumesic JA
    Annu Rev Chem Biomol Eng; 2018 Jun; 9():413-450. PubMed ID: 29641915
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Achieving Theory-Experiment Parity for Activity and Selectivity in Heterogeneous Catalysis Using Microkinetic Modeling.
    Xie W; Xu J; Chen J; Wang H; Hu P
    Acc Chem Res; 2022 May; 55(9):1237-1248. PubMed ID: 35442027
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Towards rational catalyst design: boosting the rapid prediction of transition-metal activity by improved scaling relations.
    Wang Y; Xiao L; Qi Y; Mahmoodinia M; Feng X; Yang J; Zhu YA; Chen D
    Phys Chem Chem Phys; 2019 Sep; 21(35):19269-19280. PubMed ID: 31441913
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combining Computational Modeling with Reaction Kinetics Experiments for Elucidating the
    Bhandari S; Rangarajan S; Mavrikakis M
    Acc Chem Res; 2020 Sep; 53(9):1893-1904. PubMed ID: 32869965
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of reaction schemes using maximum rates of constituent steps.
    Motagamwala AH; Dumesic JA
    Proc Natl Acad Sci U S A; 2016 May; 113(21):E2879-88. PubMed ID: 27162366
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Implementing the Blowers-Masel Approximation to Scale Activation Energy Based on Reaction Enthalpy in Mean-Field Microkinetic Modeling for Catalytic Methane Partial Oxidation.
    Xu C; Mazeau EJ; West RH
    ACS Catal; 2024 May; 14(10):8013-8029. PubMed ID: 38779181
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Micki: A python-based object-oriented microkinetic modeling code.
    Hermes ED; Janes AN; Schmidt JR
    J Chem Phys; 2019 Jul; 151(1):014112. PubMed ID: 31272177
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Study on the Role of Electric Field in Low-Temperature Plasma Catalytic Ammonia Synthesis via Integrated Density Functional Theory and Microkinetic Modeling.
    Shao K; Mesbah A
    JACS Au; 2024 Feb; 4(2):525-544. PubMed ID: 38425907
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microkinetic Molecular Volcano Plots for Enhanced Catalyst Selectivity and Activity Predictions.
    Worakul T; Laplaza R; Das S; Wodrich MD; Corminboeuf C
    ACS Catal; 2024 Jul; 14(13):9829-9839. PubMed ID: 38988648
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A self-adjusting platinum surface for acetone hydrogenation.
    Demir B; Kropp T; Rivera-Dones KR; Gilcher EB; Huber GW; Mavrikakis M; Dumesic JA
    Proc Natl Acad Sci U S A; 2020 Feb; 117(7):3446-3450. PubMed ID: 32005709
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of morphological changes of catalyst materials under reaction conditions by combined
    Cheula R; Soon A; Maestri M
    Catal Sci Technol; 2018 Jul; 8(14):3493-3503. PubMed ID: 30713655
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CATKINAS: A large-scale catalytic microkinetic analysis software for mechanism auto-analysis and catalyst screening.
    Chen J; Jia M; Hu P; Wang H
    J Comput Chem; 2021 Feb; 42(5):379-391. PubMed ID: 33315262
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adsorption Enthalpies for Catalysis Modeling through Machine-Learned Descriptors.
    Andersen M; Reuter K
    Acc Chem Res; 2021 Jun; 54(12):2741-2749. PubMed ID: 34080415
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Genesis of Molecular Volcano Plots.
    Wodrich MD; Sawatlon B; Busch M; Corminboeuf C
    Acc Chem Res; 2021 Mar; 54(5):1107-1117. PubMed ID: 33570407
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling ethanol decomposition on transition metals: a combined application of scaling and Brønsted-Evans-Polanyi relations.
    Ferrin P; Simonetti D; Kandoi S; Kunkes E; Dumesic JA; Nørskov JK; Mavrikakis M
    J Am Chem Soc; 2009 Apr; 131(16):5809-15. PubMed ID: 19334787
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SurfKin: an ab initio kinetic code for modeling surface reactions.
    Le TN; Liu B; Huynh LK
    J Comput Chem; 2014 Oct; 35(26):1890-9. PubMed ID: 25111729
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Lattice Kinetic Monte Carlo Solver for First-Principles Microkinetic Trend Studies.
    Hoffmann MJ; Bligaard T
    J Chem Theory Comput; 2018 Mar; 14(3):1583-1593. PubMed ID: 29357239
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of the components' interface on the synthesis of methanol over Cu/ZnO from CO2/H2: a microkinetic analysis based on DFT + U calculations.
    Tang QL; Zou WT; Huang RK; Wang Q; Duan XX
    Phys Chem Chem Phys; 2015 Mar; 17(11):7317-33. PubMed ID: 25697118
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mesokinetics as a Tool Bridging the Microscopic-to-Macroscopic Transition to Rationalize Catalyst Design.
    Chen W; Qian G; Wan Y; Chen D; Zhou X; Yuan W; Duan X
    Acc Chem Res; 2022 Nov; 55(22):3230-3241. PubMed ID: 36321554
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.