These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 3320690)

  • 21. [Effect of He-Ne-laser irradiation on plasmid transformation of Escherichia coli bacteria].
    Tiflova OA; Leonov PG; Karbysheva EA; Shakhnabatian LG
    Mikrobiologiia; 1997; 66(5):640-3. PubMed ID: 9424562
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Role of primary photoacceptors in low-power laser effects: action of He-Ne laser radiation on bacteriophage T4-Escherichia coli interaction.
    Tiphlova O; Karu T
    Lasers Surg Med; 1989; 9(1):67-9. PubMed ID: 2648092
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Estimation of the energy load formed by optical radiation of natural and artificial sources].
    Hvozdenko LA; Cherdnichenko IM
    Fiziol Zh (1994); 2003; 49(2):106-10. PubMed ID: 12945124
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ultraviolet (193, 216 and 254 nm) photoinactivation of Escherichia coli strains with different repair deficiencies.
    Gurzadyan GG; Görner H; Schulte-Frohlinde D
    Radiat Res; 1995 Mar; 141(3):244-51. PubMed ID: 7871151
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of 810 nm laser irradiation on in vitro growth of bacteria: comparison of continuous wave and frequency modulated light.
    Nussbaum EL; Lilge L; Mazzulli T
    Lasers Surg Med; 2002; 31(5):343-51. PubMed ID: 12430152
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparison of the effects of visible femtosecond laser pulses and continuous wave laser radiation of low average intensity on the clonogenicity of Escherichia coli.
    Karu TI; Tiphlova OA; Matveyets YuA ; Yartsev AP; Letokhov VS
    J Photochem Photobiol B; 1991 Sep; 10(4):339-44. PubMed ID: 1791489
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Pulsed ultra-violet inactivation spectrum of Escherichia coli.
    Wang T; Macgregor SJ; Anderson JG; Woolsey GA
    Water Res; 2005 Aug; 39(13):2921-5. PubMed ID: 15993922
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Relative roles of uvrA and recA genes in the recovery of Escherichia coli and phage lambda after ultraviolet irradiation.
    Salaj-Smic E; Petranović D; Petranović M; Trgovcević Z
    Radiat Res; 1980 Aug; 83(2):323-9. PubMed ID: 6447310
    [No Abstract]   [Full Text] [Related]  

  • 29. Treatment of microbiologically polluted aquaculture waters by a novel photochemical technique of potentially low environmental impact.
    Magaraggia M; Faccenda F; Gandolfi A; Jori G
    J Environ Monit; 2006 Sep; 8(9):923-31. PubMed ID: 16951752
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Is the coherence of low-intensity laser light essential for its effect on biological objects?].
    Lobko VV; Karu TI; Letokhov VS
    Biofizika; 1985; 30(2):366-71. PubMed ID: 3886016
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Visible light-induced killing of bacteria as a function of wavelength: implication for wound healing.
    Lipovsky A; Nitzan Y; Gedanken A; Lubart R
    Lasers Surg Med; 2010 Aug; 42(6):467-72. PubMed ID: 20662022
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Pyrimidine dimers induced in Escherichia coli DNA by ultraviolet radiation present in sunlight.
    Ellison MJ; Childs JD
    Photochem Photobiol; 1981 Oct; 34(4):465-9. PubMed ID: 7031709
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cell attachment modulation by radiation from a pulsed light diode (lambda = 820 nm) and various chemicals.
    Karu TI; Pyatibrat LV; Kalendo GS
    Lasers Surg Med; 2001; 28(3):227-36. PubMed ID: 11295757
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Role of ground and excited singlet state oxygen in the red light-induced stimulation of Escherichia coli cell growth.
    Polo L; Presti F; Schindl A; Schindl L; Jori G; Bertoloni G
    Biochem Biophys Res Commun; 1999 Apr; 257(3):753-8. PubMed ID: 10208855
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Some results of radiobiological studies performed on Cosmos-110 biosatellite.
    Antipov VV; Delone NL; Nikitin MD; Parfyonov GP; Saxonov PP
    Life Sci Space Res; 1969; 7():207-8. PubMed ID: 12197540
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Synthesis, properties, and photodynamic inactivation of Escherichia coli using a cationic and a noncharged Zn(II) pyridyloxyphthalocyanine derivatives.
    Scalise I; Durantini EN
    Bioorg Med Chem; 2005 Apr; 13(8):3037-45. PubMed ID: 15781413
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparative mutagenesis of Escherichia coli strains with different repair deficiencies irradiated with 222-nm and 254-nm ultraviolet light.
    Clauss M; Grotjohann N
    Mutat Res; 2009 Mar; 673(2):83-6. PubMed ID: 19146982
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Finding optimal photosensitisers for the decontamination of foods by the photodynamic effect.
    Kreitner M; Wagner KH; Alth G; Ebermann R; Foissy H; Elmadfa I
    Forum Nutr; 2003; 56():367-9. PubMed ID: 15806940
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electrochemically assisted photocatalytic inactivation of Escherichia coli under visible light using a ZnIn2S4 film electrode.
    Yu H; Quan X; Zhang Y; Ma N; Chen S; Zhao H
    Langmuir; 2008 Jul; 24(14):7599-604. PubMed ID: 18553986
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Efficiency of pyrimidine dimer formation in Escherichia coli across UV wavelengths.
    Eischeid AC; Linden KG
    J Appl Microbiol; 2007 Nov; 103(5):1650-6. PubMed ID: 17953576
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.