BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 332071)

  • 1. Physiological effects of an antimycotic azasterol on cultures of Saccharomyces cerevisiae.
    Hays PR; Neal WD; Parks LW
    Antimicrob Agents Chemother; 1977 Aug; 12(2):185-91. PubMed ID: 332071
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accumulation of ergosta-8,14-dien-3beta-ol by Saccharomyces cerevisiae cultured with an azasterol antimycotic agent.
    Hays PR; Parks LW; Pierce HD; Oehlschlager AC
    Lipids; 1977 Aug; 12(8):666-8. PubMed ID: 331008
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Homoazasterol-mediated inhibition of yeast sterol biosynthesis.
    Bailey RB; Hays PR; Parks LW
    J Bacteriol; 1976 Dec; 128(3):730-4. PubMed ID: 791927
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mode of action of the azasteroid antibiotic 15-aza-24 methylene-d-homocholesta-8,14-dien-3 beta-ol in Ustilago maydis.
    Woloshuk CP; Sisler HD; Dutky SR
    Antimicrob Agents Chemother; 1979 Jul; 16(1):81-97. PubMed ID: 383015
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Delta14-sterol reductase in Saccharomyces cerevisiae.
    Bottema CK; Parks LW
    Biochim Biophys Acta; 1978 Dec; 531(3):301-7. PubMed ID: 32908
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Azasterol inhibitors in yeast. Inhibition of the delta 24-sterol methyltransferase and the 24-methylene sterol delta 24(28)-reductase in sterol mutants of Saccharomyces cerevisiae.
    Pierce AM; Unrau AM; Oehlschlager AC; Woods RA
    Can J Biochem; 1979 Mar; 57(3):201-8. PubMed ID: 373868
    [No Abstract]   [Full Text] [Related]  

  • 7. Physiological response of Saccharomyces cerevisiae to 15-azasterol-mediated growth inhibition.
    Rodriguez RJ; Parks LW
    Antimicrob Agents Chemother; 1981 Aug; 20(2):184-9. PubMed ID: 7025753
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relationship between antifungal activity and inhibition of sterol biosynthesis in miconazole, clotrimazole, and 15-azasterol.
    Taylor FR; Rodriguez RJ; Parks LW
    Antimicrob Agents Chemother; 1983 Apr; 23(4):515-21. PubMed ID: 6344784
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rate-limiting steps in the Saccharomyces cerevisiae ergosterol pathway: towards improved ergosta-5,7-dien-3β-ol accumulation by metabolic engineering.
    Ma BX; Ke X; Tang XL; Zheng RC; Zheng YG
    World J Microbiol Biotechnol; 2018 Mar; 34(4):55. PubMed ID: 29594560
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sterols in yeast subcellular fractions.
    Parks LW; McLean-Bowen C; Taylor FR; Hough S
    Lipids; 1978 Oct; 13(10):730-5. PubMed ID: 364234
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ergosterol depletion and 4-methyl sterols accumulation in the yeast Saccharomyces cerevisiae treated with an antifungal, 6-amino-2-n-pentylthiobenzothiazole.
    Kuchta T; Bartková K; Kubinec R
    Biochem Biophys Res Commun; 1992 Nov; 189(1):85-91. PubMed ID: 1449509
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Azasterol inhibitors in yeast. Inhibition of the 24-methylene sterol delta24(28)-reductase and delta24-sterol methyltransferase of Saccharomyces cerevisiae by 23-azacholesterol.
    Pierce HD; Pierce AM; Srinivasan R; Unrau AM; Oehlschlager AC
    Biochim Biophys Acta; 1978 Jun; 529(3):429-37. PubMed ID: 352402
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel sterol transformations promoted by Saccharomyces cerevisiae strain GL7: evidence for 9 beta, 19-cyclopropyl to 9(11)-isomerization and for 14-demethylation to 8(14)-sterols.
    Venkatramesh M; Nes WD
    Arch Biochem Biophys; 1995 Dec; 324(1):189-99. PubMed ID: 7503554
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulation of fluconazole sensitivity by the interaction of mitochondria and erg3p in Saccharomyces cerevisiae.
    Kontoyiannis DP
    J Antimicrob Chemother; 2000 Aug; 46(2):191-7. PubMed ID: 10933640
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of a Saccharomyces cerevisiae mutant, N22, defective in ergosterol synthesis and preparation of [28-14C]ergosta-5,7-dien-3 beta-ol with the mutant.
    Hata S; Oda Y; Nishino T; Katsuki H; Aoyama Y; Yoshida Y; Nagai J
    J Biochem; 1983 Aug; 94(2):501-10. PubMed ID: 6355078
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sterol composition of a delta 5,7-sterol-rich strain of Saccharomyces cerevisiae during batch growth.
    Novotný C; Bĕhalová B; Struzinský R; Novák M; Zajícek J
    Folia Microbiol (Praha); 1988; 33(5):377-85. PubMed ID: 3060417
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mode of action and resistance to azole antifungals associated with the formation of 14 alpha-methylergosta-8,24(28)-dien-3 beta,6 alpha-diol.
    Kelly SL; Lamb DC; Corran AJ; Baldwin BC; Kelly DE
    Biochem Biophys Res Commun; 1995 Feb; 207(3):910-5. PubMed ID: 7864896
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of an azasterol inhibitor of sterol 24-transmethylation on sterol biosynthesis and growth of Leishmania donovani promastigotes.
    Haughan PA; Chance ML; Goad LJ
    Biochem J; 1995 May; 308 ( Pt 1)(Pt 1):31-8. PubMed ID: 7755579
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of sterol alterations on nystatin sensitivity in Saccharomyces cerevisiae.
    Richman-Boytas CM; Parks LW
    Microbios; 1989; 59(239):101-11. PubMed ID: 2682140
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of altered sterol composition on growth characteristics of Saccharomyces cerevisiae.
    Thompson ED; Parks LW
    J Bacteriol; 1974 Nov; 120(2):779-84. PubMed ID: 4616948
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.