These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 33207322)

  • 1. High performance liquid metal thermal interface materials.
    Chen S; Deng Z; Liu J
    Nanotechnology; 2021 Feb; 32(9):092001. PubMed ID: 33207322
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Liquid Metal Composites with Enhanced Thermal Conductivity and Stability Using Molecular Thermal Linker.
    Wang H; Xing W; Chen S; Song C; Dickey MD; Deng T
    Adv Mater; 2021 Oct; 33(43):e2103104. PubMed ID: 34510554
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultralow Interfacial Thermal Resistance of Graphene Thermal Interface Materials with Surface Metal Liquefaction.
    Dai W; Ren XJ; Yan Q; Wang S; Yang M; Lv L; Ying J; Chen L; Tao P; Sun L; Xue C; Yu J; Song C; Nishimura K; Jiang N; Lin CT
    Nanomicro Lett; 2022 Dec; 15(1):9. PubMed ID: 36484932
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alveoli-Mimetic Synergistic Liquid and Solid Thermal Conductive Interface as a Novel Strategy for Designing High-Performance Thermal Interface Materials.
    Zheng S; Xue H; Liu Y; Yu X; Cao Z
    Small; 2024 Apr; 20(16):e2306750. PubMed ID: 38044278
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dry-Contact Thermal Interface Material with the Desired Bond Line Thickness and Ultralow Applied Thermal Resistance.
    Dou Z; Zhang B; Xu P; Fu Q; Wu K
    ACS Appl Mater Interfaces; 2023 Nov; ():. PubMed ID: 38019643
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pressure-Activated Thermal Transport via Oxide Shell Rupture in Liquid Metal Capsule Beds.
    Uppal A; Ralphs M; Kong W; Hart M; Rykaczewski K; Wang RY
    ACS Appl Mater Interfaces; 2020 Jan; 12(2):2625-2633. PubMed ID: 31859474
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In Situ Alloying of Thermally Conductive Polymer Composites by Combining Liquid and Solid Metal Microadditives.
    Ralphs MI; Kemme N; Vartak PB; Joseph E; Tipnis S; Turnage S; Solanki KN; Wang RY; Rykaczewski K
    ACS Appl Mater Interfaces; 2018 Jan; 10(2):2083-2092. PubMed ID: 29235852
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermal Interface Materials with High Thermal Conductivity and Low Young's Modulus Using a Solid-Liquid Metal Codoping Strategy.
    Zhang XD; Zhang ZT; Wang HZ; Cao BY
    ACS Appl Mater Interfaces; 2023 Jan; 15(2):3534-3542. PubMed ID: 36604306
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Dielectrophoretic Alignment of Biphasic Metal Fillers for Thermal Interface Materials.
    Lee Y; Akyildiz K; Kang C; So JH; Koo HJ
    Polymers (Basel); 2023 Dec; 15(24):. PubMed ID: 38139905
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 2D Materials-Based Thermal Interface Materials: Structure, Properties, and Applications.
    Dai W; Wang Y; Li M; Chen L; Yan Q; Yu J; Jiang N; Lin CT
    Adv Mater; 2024 Jun; ():e2311335. PubMed ID: 38847403
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Significantly enhanced phonon mean free path and thermal conductivity by percolation of silver nanoflowers.
    Suh D; Lee S; Xu C; Jan AA; Baik S
    Phys Chem Chem Phys; 2019 Jan; 21(5):2453-2462. PubMed ID: 30652710
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Patterned liquid metal embedded in brush-shaped polymers for dynamic thermal management.
    He Q; Qin M; Zhang H; Yue J; Peng L; Liu G; Feng Y; Feng W
    Mater Horiz; 2024 Jan; 11(2):531-544. PubMed ID: 37982197
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface Modification Using Polydopamine-Coated Liquid Metal Nanocapsules for Improving Performance of Graphene Paper-Based Thermal Interface Materials.
    Gao J; Yan Q; Tan X; Lv L; Ying J; Zhang X; Yang M; Du S; Wei Q; Xue C; Li H; Yu J; Lin CT; Dai W; Jiang N
    Nanomaterials (Basel); 2021 May; 11(5):. PubMed ID: 34067230
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly thermal conductive copper nanowire composites with ultralow loading: toward applications as thermal interface materials.
    Wang S; Cheng Y; Wang R; Sun J; Gao L
    ACS Appl Mater Interfaces; 2014 May; 6(9):6481-6. PubMed ID: 24716483
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent Advances in Thermal Interface Materials for Thermal Management of High-Power Electronics.
    Xing W; Xu Y; Song C; Deng T
    Nanomaterials (Basel); 2022 Sep; 12(19):. PubMed ID: 36234498
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly Thermally Conductive Graphene-Based Thermal Interface Materials with a Bilayer Structure for Central Processing Unit Cooling.
    Wang ZG; Lv JC; Zheng ZL; Du JG; Dai K; Lei J; Xu L; Xu JZ; Li ZM
    ACS Appl Mater Interfaces; 2021 Jun; 13(21):25325-25333. PubMed ID: 34009940
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxide-Mediated Formation of Chemically Stable Tungsten-Liquid Metal Mixtures for Enhanced Thermal Interfaces.
    Kong W; Wang Z; Wang M; Manning KC; Uppal A; Green MD; Wang RY; Rykaczewski K
    Adv Mater; 2019 Nov; 31(44):e1904309. PubMed ID: 31523854
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Comparative Study of Thermal Aging Effect on the Properties of Silicone-Based and Silicone-Free Thermal Gap Filler Materials.
    Chowdhury ASMR; Rabby MM; Kabir M; Das PP; Bhandari R; Raihan R; Agonafer D
    Materials (Basel); 2021 Jun; 14(13):. PubMed ID: 34202198
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Graphene-Based Thermal Interface Materials: An Application-Oriented Perspective on Architecture Design.
    Lv L; Dai W; Li A; Lin CT
    Polymers (Basel); 2018 Oct; 10(11):. PubMed ID: 30961126
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dense Vertically Aligned Copper Nanowire Composites as High Performance Thermal Interface Materials.
    Barako MT; Isaacson SG; Lian F; Pop E; Dauskardt RH; Goodson KE; Tice J
    ACS Appl Mater Interfaces; 2017 Dec; 9(48):42067-42074. PubMed ID: 29119783
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.