These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
336 related articles for article (PubMed ID: 33207520)
21. Acute effects of PAH contamination on microbial community of different forest soils. Picariello E; Baldantoni D; De Nicola F Environ Pollut; 2020 Jul; 262():114378. PubMed ID: 32443209 [TBL] [Abstract][Full Text] [Related]
22. Assembly and functional profile of rhizosphere microbial community during the Salix viminalis-AMF remediation of polycyclic aromatic hydrocarbon polluted soils. Li X; Song C; Kang X; Chen F; Li A; Wang Y; Zou J; Yin J; Li Y; Sun Z; Ma X; Liu J J Environ Manage; 2024 Nov; 370():122503. PubMed ID: 39299104 [TBL] [Abstract][Full Text] [Related]
23. Biodegradation of polycyclic aromatic hydrocarbons: Using microbial bioelectrochemical systems to overcome an impasse. Kronenberg M; Trably E; Bernet N; Patureau D Environ Pollut; 2017 Dec; 231(Pt 1):509-523. PubMed ID: 28841503 [TBL] [Abstract][Full Text] [Related]
24. Impact of nitrogen-polycyclic aromatic hydrocarbons on phenanthrene and benzo[a]pyrene mineralisation in soil. Anyanwu IN; Ikpikpini OC; Semple KT Ecotoxicol Environ Saf; 2018 Jan; 147():594-601. PubMed ID: 28923724 [TBL] [Abstract][Full Text] [Related]
25. Effects of combined remediation of pre-ozonation and bioaugmentation on degradation of benzo[a]pyrene and microbial community structure in soils. Lu X; Luo T; Li X; Wang Y; Ma Y; Wang B Environ Sci Pollut Res Int; 2023 Apr; 30(19):55557-55568. PubMed ID: 36897443 [TBL] [Abstract][Full Text] [Related]
26. Effect of electric fields strength on soil factors and microorganisms during electro-bioremediation of benzo[a]pyrene-contaminated soil. Li F; Li J; Tong M; Xi K; Guo S Chemosphere; 2023 Nov; 341():139845. PubMed ID: 37634583 [TBL] [Abstract][Full Text] [Related]
27. Effects of bioaugmentation by isolated Achromobacter xylosoxidans BP1 on PAHs degradation and microbial community in contaminated soil. Zhang B; Xu W; Ma Y; Gao X; Ming H; Jia J J Environ Manage; 2023 May; 334():117491. PubMed ID: 36801800 [TBL] [Abstract][Full Text] [Related]
28. Influence of Rhizobium meliloti on phytoremediation of polycyclic aromatic hydrocarbons by alfalfa in an aged contaminated soil. Teng Y; Shen Y; Luo Y; Sun X; Sun M; Fu D; Li Z; Christie P J Hazard Mater; 2011 Feb; 186(2-3):1271-6. PubMed ID: 21177027 [TBL] [Abstract][Full Text] [Related]
29. Comparative analysis of remediation efficiency and ultrastructural translocalization of polycyclic aromatic hydrocarbons in Panwar R; Mathur J Int J Phytoremediation; 2023; 25(13):1743-1761. PubMed ID: 36935611 [TBL] [Abstract][Full Text] [Related]
30. Effects of polycyclic aromatic hydrocarbons on microbial community structure and PAH ring hydroxylating dioxygenase gene abundance in soil. Sawulski P; Clipson N; Doyle E Biodegradation; 2014 Nov; 25(6):835-47. PubMed ID: 25095739 [TBL] [Abstract][Full Text] [Related]
31. Evaluation of dissipation gradients of polycyclic aromatic hydrocarbons in rice rhizosphere utilizing a sequential extraction procedure. Ma B; Wang J; Xu M; He Y; Wang H; Wu L; Xu J Environ Pollut; 2012 Mar; 162():413-21. PubMed ID: 22243893 [TBL] [Abstract][Full Text] [Related]
32. Soil bacterial community dynamics following surfactant addition and bioaugmentation in pyrene-contaminated soils. Wolf DC; Cryder Z; Gan J Chemosphere; 2019 Sep; 231():93-102. PubMed ID: 31128356 [TBL] [Abstract][Full Text] [Related]
33. Synergetic effects of microbial-phytoremediation reshape microbial communities and improve degradation of petroleum contaminants. Wang A; Fu W; Feng Y; Liu Z; Song D J Hazard Mater; 2022 May; 429():128396. PubMed ID: 35236043 [TBL] [Abstract][Full Text] [Related]
34. Microbial diversity and co-occurrence patterns in deep soils contaminated by polycyclic aromatic hydrocarbons (PAHs). Geng S; Cao W; Yuan J; Wang Y; Guo Y; Ding A; Zhu Y; Dou J Ecotoxicol Environ Saf; 2020 Oct; 203():110931. PubMed ID: 32684516 [TBL] [Abstract][Full Text] [Related]
35. The Emergence of Different Functionally Equivalent PAH Degrading Microbial Communities from a Single Soil in Liquid PAH Enrichment Cultures and Soil Microcosms Receiving PAHs with and without Bioaugmentation. Piubeli FA; Dos Santos LG; Fernández EN; DA Silva FH; Durrant LR; Grossman MJ Pol J Microbiol; 2018; 67(3):365-375. PubMed ID: 30451454 [TBL] [Abstract][Full Text] [Related]
36. Remediation of PAH-contaminated soil at a gas manufacturing plant by a combined two-phase partition system washing and microbial degradation process. Gong X; Xu X; Gong Z; Li X; Jia C; Guo M; Li H Environ Sci Pollut Res Int; 2015 Aug; 22(16):12001-10. PubMed ID: 25874432 [TBL] [Abstract][Full Text] [Related]
37. Remediation potential of an immobilized microbial consortium with corn straw as a carrier in polycyclic aromatic hydrocarbons contaminated soil. Zhou X; Sun Y; Wang T; Tang L; Ling W; Mosa A; Wang J; Gao Y J Hazard Mater; 2024 May; 469():134091. PubMed ID: 38513440 [TBL] [Abstract][Full Text] [Related]
38. Fungal bioremediation of the creosote-contaminated soil: influence of Pleurotus ostreatus and Irpex lacteus on polycyclic aromatic hydrocarbons removal and soil microbial community composition in the laboratory-scale study. Byss M; Elhottová D; Tříska J; Baldrian P Chemosphere; 2008 Nov; 73(9):1518-23. PubMed ID: 18782639 [TBL] [Abstract][Full Text] [Related]
39. Enhanced phytoremediation of soils contaminated with PAHs by arbuscular mycorrhiza and rhizobium. Ren CG; Kong CC; Bian B; Liu W; Li Y; Luo YM; Xie ZH Int J Phytoremediation; 2017 Sep; 19(9):789-797. PubMed ID: 28165756 [TBL] [Abstract][Full Text] [Related]
40. Bacterial community dynamics and polycyclic aromatic hydrocarbon degradation during bioremediation of heavily creosote-contaminated soil. Viñas M; Sabaté J; Espuny MJ; Solanas AM Appl Environ Microbiol; 2005 Nov; 71(11):7008-18. PubMed ID: 16269736 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]