These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 33207615)

  • 1. Piezo-Sensitive Fabrics from Carbon Black Containing Conductive Cellulose Fibres for Flexible Pressure Sensors.
    Ullrich J; Eisenreich M; Zimmermann Y; Mayer D; Koehne N; Tschannett JF; Mahmud-Ali A; Bechtold T
    Materials (Basel); 2020 Nov; 13(22):. PubMed ID: 33207615
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dope Dyeing of Regenerated Cellulose Fibres with Leucoindigo as Base for Circularity of Denim.
    Manian AP; Müller S; Braun DE; Pham T; Bechtold T
    Polymers (Basel); 2022 Dec; 14(23):. PubMed ID: 36501674
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of Mode-Switchable Touch Sensor Using MWCNT Composite Conductive Nonwoven Fabric.
    Jang SJ; Kim M; Lim JY; Park YK; Ko JH
    Polymers (Basel); 2022 Apr; 14(8):. PubMed ID: 35458301
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Upcycling of cellulosic textile waste with bacterial cellulose via Ioncell® technology.
    A G S Silva F; Schlapp-Hackl I; Nygren N; Heimala S; Leinonen A; Dourado F; Gama M; Hummel M
    Int J Biol Macromol; 2024 Jun; 271(Pt 1):132194. PubMed ID: 38821791
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wet spinning of strong cellulosic fibres with incorporation of phase change material capsules stabilized by cellulose nanocrystals.
    Samanta A; Nechyporchuk O; Bordes R
    Carbohydr Polym; 2023 Jul; 312():120734. PubMed ID: 37059568
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Progress in Flexible Electronic Textile for Heating Application: A Critical Review.
    Repon MR; Mikučionienė D
    Materials (Basel); 2021 Oct; 14(21):. PubMed ID: 34772066
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multi-Point Flexible Temperature Sensor Array and Thermoelectric Generator Made from Copper-Coated Textiles.
    Landsiedel J; Root W; Aguiló-Aguayo N; Duelli H; Bechtold T; Pham T
    Sensors (Basel); 2021 May; 21(11):. PubMed ID: 34071250
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flexible Textile Strain Sensor Based on Copper-Coated Lyocell Type Cellulose Fabric.
    Root W; Wright T; Caven B; Bechtold T; Pham T
    Polymers (Basel); 2019 May; 11(5):. PubMed ID: 31052509
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ca²+ sorption on regenerated cellulose fibres.
    Fitz-Binder C; Bechtold T
    Carbohydr Polym; 2012 Oct; 90(2):937-42. PubMed ID: 22840023
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Closing the textile loop: Enzymatic fibre separation and recycling of wool/polyester fabric blends.
    Navone L; Moffitt K; Hansen KA; Blinco J; Payne A; Speight R
    Waste Manag; 2020 Feb; 102():149-160. PubMed ID: 31678801
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inkjet Printing of Reactive Silver Ink on Textiles.
    Shahariar H; Kim I; Soewardiman H; Jur JS
    ACS Appl Mater Interfaces; 2019 Feb; 11(6):6208-6216. PubMed ID: 30644708
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hybrid Antibacterial and Electro-conductive Coating for Textiles Based on Cationic Conjugated Polymer.
    Jarach N; Meridor D; Buzhor M; Raichman D; Dodiuk H; Kenig S; Amir E
    Polymers (Basel); 2020 Jul; 12(7):. PubMed ID: 32650512
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantification of different microplastic fibres discharged from textiles in machine wash and tumble drying.
    Kärkkäinen N; Sillanpää M
    Environ Sci Pollut Res Int; 2021 Apr; 28(13):16253-16263. PubMed ID: 33340055
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Successful cultivation of edible fungi on textile waste offers a new avenue for bioremediation and potential food production.
    Hazelgrove L; Moody SC
    Sci Rep; 2024 May; 14(1):11510. PubMed ID: 38769087
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Comparative Characterization of Smart Textile Pressure Sensors.
    Kamara V; Kargwal SK; Constant N; Gordon R; Humphreys G; Mankodiya K
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():1745-1748. PubMed ID: 31946235
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemical extraction and its effect on the properties of cordleaf burbark (
    Soppie AG; Betené ADO; Anicet Noah PM; Njom AE; Betené Ebanda F; Ateba A; Mewoli A; Efeze DN; Moukené R
    Heliyon; 2023 Jun; 9(6):e17581. PubMed ID: 37408913
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biohybrids: Textile fibres provide scaffolds and highways for microbial translocation.
    Sherry A; Dell'Agnese BM; Scott J
    Front Bioeng Biotechnol; 2023; 11():1188965. PubMed ID: 37383521
    [No Abstract]   [Full Text] [Related]  

  • 18. Production of rayon fibres from cellulosic pulps: State of the art and current developments.
    Mendes ISF; Prates A; Evtuguin DV
    Carbohydr Polym; 2021 Dec; 273():118466. PubMed ID: 34560932
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Core-sheath nanofiber yarn for textile pressure sensor with high pressure sensitivity and spatial tactile acuity.
    Qi K; Wang H; You X; Tao X; Li M; Zhou Y; Zhang Y; He J; Shao W; Cui S
    J Colloid Interface Sci; 2020 Mar; 561():93-103. PubMed ID: 31812870
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Screen-Printed Carbon Black/Recycled Sericin@Fabrics for Wearable Sensors to Monitor Sweat Loss.
    Ma H; Li J; Zhou J; Luo Q; Wu W; Mao Z; Ma W
    ACS Appl Mater Interfaces; 2022 Mar; 14(9):11813-11819. PubMed ID: 35226452
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.