BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

613 related articles for article (PubMed ID: 33208453)

  • 1. Herpes Simplex Virus 1 MicroRNA miR-H8 Is Dispensable for Latency and Reactivation
    Barrozo ER; Nakayama S; Singh P; Neumann DM; Bloom DC
    J Virol; 2021 Jan; 95(4):. PubMed ID: 33208453
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deletion of Herpes Simplex Virus 1 MicroRNAs miR-H1 and miR-H6 Impairs Reactivation.
    Barrozo ER; Nakayama S; Singh P; Vanni EAH; Arvin AM; Neumann DM; Bloom DC
    J Virol; 2020 Jul; 94(15):. PubMed ID: 32295910
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Increased neurovirulence and reactivation of the herpes simplex virus type 1 latency-associated transcript (LAT)-negative mutant dLAT2903 with a disrupted LAT miR-H2.
    Jiang X; Brown D; Osorio N; Hsiang C; BenMohamed L; Wechsler SL
    J Neurovirol; 2016 Feb; 22(1):38-49. PubMed ID: 26069184
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lund Human Mesencephalic (LUHMES) Neuronal Cell Line Supports Herpes Simplex Virus 1 Latency
    Edwards TG; Bloom DC
    J Virol; 2019 Mar; 93(6):. PubMed ID: 30602607
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Herpes Simplex Virus 2 Latency-Associated Transcript (LAT) Region Mutations Do Not Identify a Role for LAT-Associated MicroRNAs in Viral Reactivation in Guinea Pig Genital Models.
    Kawamura Y; Bosch-Marce M; Tang S; Patel A; Krause PR
    J Virol; 2018 Jul; 92(14):. PubMed ID: 29720520
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Herpes Simplex Virus 1 Strains 17
    Grams TR; Edwards TG; Bloom DC
    J Virol; 2020 Jul; 94(15):. PubMed ID: 32461310
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mutations Inactivating Herpes Simplex Virus 1 MicroRNA miR-H2 Do Not Detectably Increase ICP0 Gene Expression in Infected Cultured Cells or Mouse Trigeminal Ganglia.
    Pan D; Pesola JM; Li G; McCarron S; Coen DM
    J Virol; 2017 Jan; 91(2):. PubMed ID: 27847363
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An M2 Rather than a T
    Lee DH; Ghiasi H
    J Virol; 2018 May; 92(10):. PubMed ID: 29491152
    [TBL] [Abstract][Full Text] [Related]  

  • 9.
    Watson ZL; Washington SD; Phelan DM; Lewin AS; Tuli SS; Schultz GS; Neumann DM; Bloom DC
    J Virol; 2018 Aug; 92(16):. PubMed ID: 29875240
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modulation of Voltage-Gated Sodium Channel Activity in Human Dorsal Root Ganglion Neurons by Herpesvirus Quiescent Infection.
    Zhang Q; Martin-Caraballo M; Hsia SV
    J Virol; 2020 Jan; 94(3):. PubMed ID: 31694955
    [TBL] [Abstract][Full Text] [Related]  

  • 11. HSV-1 LAT Promoter Deletion Viruses Exhibit Strain-Specific and LAT-Dependent Epigenetic Regulation of Latent Viral Genomes in Human Neurons.
    Grams TR; Edwards TG; Bloom DC
    J Virol; 2023 Feb; 97(2):e0193522. PubMed ID: 36722973
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MicroRNAs expressed by herpes simplex virus 1 during latent infection regulate viral mRNAs.
    Umbach JL; Kramer MF; Jurak I; Karnowski HW; Coen DM; Cullen BR
    Nature; 2008 Aug; 454(7205):780-3. PubMed ID: 18596690
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An Immortalized Human Dorsal Root Ganglion Cell Line Provides a Novel Context To Study Herpes Simplex Virus 1 Latency and Reactivation.
    Thellman NM; Botting C; Madaj Z; Triezenberg SJ
    J Virol; 2017 Jun; 91(12):. PubMed ID: 28404842
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Small Noncoding RNA (sncRNA1) within the Latency-Associated Transcript Modulates Herpes Simplex Virus 1 Virulence and the Host Immune Response during Acute but Not Latent Infection.
    Tormanen K; Matundan HH; Wang S; Jaggi U; Mott KR; Ghiasi H
    J Virol; 2022 Apr; 96(7):e0005422. PubMed ID: 35254102
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Herpesvirus quiescence (QIF) in neuronal cells VI: Correlative analysis demonstrates usefulness of QIF-PC12 cells to examine HSV-1 latency, reactivation and genes implicated in its regulation.
    Miller C; Bhattacharjee P; Higaki S; Jacob R; Danaher R; Thompson H; Hill J
    Curr Eye Res; 2003; 26(3-4):239-48. PubMed ID: 12815553
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Herpes simplex virus type 2 (HSV-2) establishes latent infection in a different population of ganglionic neurons than HSV-1: role of latency-associated transcripts.
    Margolis TP; Imai Y; Yang L; Vallas V; Krause PR
    J Virol; 2007 Feb; 81(4):1872-8. PubMed ID: 17151134
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence that the herpes simplex virus type 1 ICP0 protein does not initiate reactivation from latency in vivo.
    Thompson RL; Sawtell NM
    J Virol; 2006 Nov; 80(22):10919-30. PubMed ID: 16943285
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Herpes simplex virus 2 microRNA miR-H6 is a novel latency-associated transcript-associated microRNA, but reduction of its expression does not influence the establishment of viral latency or the recurrence phenotype.
    Tang S; Bertke AS; Patel A; Margolis TP; Krause PR
    J Virol; 2011 May; 85(9):4501-9. PubMed ID: 21325410
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The latency-associated transcript gene of herpes simplex virus type 1 (HSV-1) is required for efficient in vivo spontaneous reactivation of HSV-1 from latency.
    Perng GC; Dunkel EC; Geary PA; Slanina SM; Ghiasi H; Kaiwar R; Nesburn AB; Wechsler SL
    J Virol; 1994 Dec; 68(12):8045-55. PubMed ID: 7966594
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A gene capable of blocking apoptosis can substitute for the herpes simplex virus type 1 latency-associated transcript gene and restore wild-type reactivation levels.
    Perng GC; Maguen B; Jin L; Mott KR; Osorio N; Slanina SM; Yukht A; Ghiasi H; Nesburn AB; Inman M; Henderson G; Jones C; Wechsler SL
    J Virol; 2002 Feb; 76(3):1224-35. PubMed ID: 11773398
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 31.