These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
286 related articles for article (PubMed ID: 33208517)
1. Identification of Spacer and Protospacer Sequence Requirements in the Vibrio cholerae Type I-E CRISPR/Cas System. Bourgeois J; Lazinski DW; Camilli A mSphere; 2020 Nov; 5(6):. PubMed ID: 33208517 [TBL] [Abstract][Full Text] [Related]
2. Avoidance of Trinucleotide Corresponding to Consensus Protospacer Adjacent Motif Controls the Efficiency of Prespacer Selection during Primed Adaptation. Musharova O; Vyhovskyi D; Medvedeva S; Guzina J; Zhitnyuk Y; Djordjevic M; Severinov K; Savitskaya E mBio; 2018 Dec; 9(6):. PubMed ID: 30514784 [TBL] [Abstract][Full Text] [Related]
3. Functional Analysis of Bacteriophage Immunity through a Type I-E CRISPR-Cas System in Vibrio cholerae and Its Application in Bacteriophage Genome Engineering. Box AM; McGuffie MJ; O'Hara BJ; Seed KD J Bacteriol; 2016 Feb; 198(3):578-90. PubMed ID: 26598368 [TBL] [Abstract][Full Text] [Related]
6. Cas4 Nucleases Define the PAM, Length, and Orientation of DNA Fragments Integrated at CRISPR Loci. Shiimori M; Garrett SC; Graveley BR; Terns MP Mol Cell; 2018 Jun; 70(5):814-824.e6. PubMed ID: 29883605 [TBL] [Abstract][Full Text] [Related]
7. High-throughput analysis of type I-E CRISPR/Cas spacer acquisition in E. coli. Savitskaya E; Semenova E; Dedkov V; Metlitskaya A; Severinov K RNA Biol; 2013 May; 10(5):716-25. PubMed ID: 23619643 [TBL] [Abstract][Full Text] [Related]
8. Cas4 Nucleases Can Effect Specific Integration of CRISPR Spacers. Zhang Z; Pan S; Liu T; Li Y; Peng N J Bacteriol; 2019 Jun; 201(12):. PubMed ID: 30936372 [TBL] [Abstract][Full Text] [Related]
9. In Silico Processing of the Complete CRISPR-Cas Spacer Space for Identification of PAM Sequences. Mendoza BJ; Trinh CT Biotechnol J; 2018 Sep; 13(9):e1700595. PubMed ID: 30076736 [TBL] [Abstract][Full Text] [Related]
10. Priming in the Type I-F CRISPR-Cas system triggers strand-independent spacer acquisition, bi-directionally from the primed protospacer. Richter C; Dy RL; McKenzie RE; Watson BN; Taylor C; Chang JT; McNeil MB; Staals RH; Fineran PC Nucleic Acids Res; 2014 Jul; 42(13):8516-26. PubMed ID: 24990370 [TBL] [Abstract][Full Text] [Related]
11. CRISPR-Cas and Contact-Dependent Secretion Systems Present on Excisable Pathogenicity Islands with Conserved Recombination Modules. Carpenter MR; Kalburge SS; Borowski JD; Peters MC; Colwell RR; Boyd EF J Bacteriol; 2017 May; 199(10):. PubMed ID: 28264992 [TBL] [Abstract][Full Text] [Related]
12. Abundant and diverse clustered regularly interspaced short palindromic repeat spacers in Clostridium difficile strains and prophages target multiple phage types within this pathogen. Hargreaves KR; Flores CO; Lawley TD; Clokie MR mBio; 2014 Aug; 5(5):e01045-13. PubMed ID: 25161187 [TBL] [Abstract][Full Text] [Related]
13. Functional Analysis of Porphyromonas gingivalis W83 CRISPR-Cas Systems. Burmistrz M; Dudek B; Staniec D; Rodriguez Martinez JI; Bochtler M; Potempa J; Pyrc K J Bacteriol; 2015 Aug; 197(16):2631-41. PubMed ID: 26013482 [TBL] [Abstract][Full Text] [Related]
14. Protospacer recognition motifs: mixed identities and functional diversity. Shah SA; Erdmann S; Mojica FJ; Garrett RA RNA Biol; 2013 May; 10(5):891-9. PubMed ID: 23403393 [TBL] [Abstract][Full Text] [Related]
15. Adaptation by Type V-A and V-B CRISPR-Cas Systems Demonstrates Conserved Protospacer Selection Mechanisms Between Diverse CRISPR-Cas Types. Wu WY; Jackson SA; Almendros C; Haagsma AC; Yilmaz S; Gort G; van der Oost J; Brouns SJJ; Staals RHJ CRISPR J; 2022 Aug; 5(4):536-547. PubMed ID: 35833800 [TBL] [Abstract][Full Text] [Related]
16. Requirements for Pseudomonas aeruginosa Type I-F CRISPR-Cas Adaptation Determined Using a Biofilm Enrichment Assay. Heussler GE; Miller JL; Price CE; Collins AJ; O'Toole GA J Bacteriol; 2016 Nov; 198(22):3080-3090. PubMed ID: 27573013 [TBL] [Abstract][Full Text] [Related]
17. Cas1 and Cas2 From the Type II-C CRISPR-Cas System of He Y; Wang M; Liu M; Huang L; Liu C; Zhang X; Yi H; Cheng A; Zhu D; Yang Q; Wu Y; Zhao X; Chen S; Jia R; Zhang S; Liu Y; Yu Y; Zhang L Front Cell Infect Microbiol; 2018; 8():195. PubMed ID: 29951376 [TBL] [Abstract][Full Text] [Related]
18. High-Throughput Characterization of Cascade type I-E CRISPR Guide Efficacy Reveals Unexpected PAM Diversity and Target Sequence Preferences. Fu BX; Wainberg M; Kundaje A; Fire AZ Genetics; 2017 Aug; 206(4):1727-1738. PubMed ID: 28634160 [TBL] [Abstract][Full Text] [Related]
19. PAM-repeat associations and spacer selection preferences in single and co-occurring CRISPR-Cas systems. Vink JNA; Baijens JHL; Brouns SJJ Genome Biol; 2021 Sep; 22(1):281. PubMed ID: 34593010 [TBL] [Abstract][Full Text] [Related]
20. Primed CRISPR-Cas Adaptation and Impaired Phage Adsorption in Streptococcus mutans. Mosterd C; Moineau S mSphere; 2021 May; 6(3):. PubMed ID: 34011685 [No Abstract] [Full Text] [Related] [Next] [New Search]