BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 3320975)

  • 21. Photocrosslinking analysis of protein-RNA interactions in E. coli transcription complexes.
    Hanna MM
    Cell Mol Biol Res; 1993; 39(4):393-9. PubMed ID: 7508793
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hexopyranosylnucleoside 6'-triphosphates are not substrates for DNA polymerases.
    Mikhailov SN; Efimtseva EV; Padyukova NS; Chidgeavadze ZG; Beabealashvilli RS
    Nucleic Acids Symp Ser; 1991; (24):17-8. PubMed ID: 1726740
    [No Abstract]   [Full Text] [Related]  

  • 23. Synthesis of dihydrothymidine and thymidine glycol 5'-triphosphates and their ability to serve as substrates for Escherichia coli DNA polymerase I.
    Ide H; Melamede RJ; Wallace SS
    Biochemistry; 1987 Feb; 26(3):964-9. PubMed ID: 3552040
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Substrate properties of C'-methyl UTP derivatives in T7 RNA polymerase reactions. Evidence for N-type NTP conformation.
    Tunitskaya VL; Rusakova EE; Padyukova NSh; Ermolinsky BS; Chernyi AA; Kochetkov SN; Lysov YuP ; Mikhailov SN
    FEBS Lett; 1997 Jan; 400(3):263-6. PubMed ID: 9009210
    [TBL] [Abstract][Full Text] [Related]  

  • 25. (E)-5-(2-bromovinyl)-2'-deoxyuridine-5'-triphosphate as a DNA polymerase substrate.
    Sági J; Szabolcs A; Szemzö A; Otvös L
    Nucleic Acids Res; 1981 Dec; 9(24):6985-94. PubMed ID: 7335497
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Spin-labeled nucleotide substrates for DNA-dependent RNA polymerase from Escherichia coli.
    Tyagi SC
    J Biol Chem; 1991 Sep; 266(27):17936-40. PubMed ID: 1655731
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Uracil glycol deoxynucleoside triphosphate is a better substrate for DNA polymerase I Klenow fragment than thymine glycol deoxynucleoside triphosphate.
    Purmal AA; Bond JP; Lyons BA; Kow YW; Wallace SS
    Biochemistry; 1998 Jan; 37(1):330-8. PubMed ID: 9425054
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Activity of DNA and RNA polymerases in resurfacing rabbit corneal epithelium.
    Colley AM; Law ML; Drake LA; Cavanagh HD
    Curr Eye Res; 1987 Mar; 6(3):477-87. PubMed ID: 3581870
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Substrate specificity of DNA polymerases. II. 5-(1-Alkynyl)-dUTPs as substrates of the Klenow DNA polymerase enzyme.
    Otvös L; Szécsi J; Sági J; Kovács T
    Nucleic Acids Symp Ser; 1987; (18):125-9. PubMed ID: 3697112
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Conformation limited nucleoside-5'-phosphates as termination substrates for DNA-polymerases].
    Chidzhavadze ZG; Bibilashvili RSh; Rozovskaia TA; Atrazhev AM; Tarusova NB; Minasian ShKh; Diatkina NB; Atrazheva ED; Kukhanova MK; Papchikhin AV
    Mol Biol (Mosk); 1989; 23(6):1732-42. PubMed ID: 2483745
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Recognition of structure of 5-halogenated derivatives of ara-UTP by DNA polymerase gamma and reverse transcriptase.
    Ono K; Ogasawara M; Ohashi A; Matsukage A; Takahashi T; Nakayama C; Saneyoshi M
    Nucleic Acids Symp Ser; 1979; (6):s129-32. PubMed ID: 94943
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Recognition of threosyl nucleotides by DNA and RNA polymerases.
    Kempeneers V; Vastmans K; Rozenski J; Herdewijn P
    Nucleic Acids Res; 2003 Nov; 31(21):6221-6. PubMed ID: 14576309
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Varied active-site constraints in the klenow fragment of E. coli DNA polymerase I and the lesion-bypass Dbh DNA polymerase.
    Cramer J; Rangam G; Marx A; Restle T
    Chembiochem; 2008 May; 9(8):1243-50. PubMed ID: 18399510
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Synthesis and characterization of 5-[(4-Azidophenacyl)thio]uridine 5'-triphosphate, a cleavable photo-cross-linking nucleotide analogue.
    Hanna MM; Dissinger S; Williams BD; Colston JE
    Biochemistry; 1989 Jul; 28(14):5814-20. PubMed ID: 2476176
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Kinetics of DNA-dependent RNA synthesis: coupled synthesis of di- and trinucleotides in the presence of a minimum complement of substrate].
    Smirnov SV; Malygin AG
    Mol Biol (Mosk); 1984; 18(2):436-46. PubMed ID: 6201718
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Substrate selection by RNA polymerase from E. coli. The role of ribose and 5'-triphosphate fragments, and nucleotides interaction.
    Szafrański P; Smagowicz WJ; Wierzchowski KL
    Acta Biochim Pol; 1985; 32(4):329-49. PubMed ID: 3938589
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Study on steady-state kinetics of nucleotide analogues incorporation by non-gel CE.
    Li W; Cao M; Pei L; Ling X; Li B; Yang Z
    Electrophoresis; 2010 Jan; 31(3):507-11. PubMed ID: 20119962
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Photoaffinity modification of bacteriophage T7 DNA-dependent RNA polymerase by the reaction product containing the azido derivative of UTP].
    Tunitskaia VL; Memelova LV; Skoblov IuS; Kochetkov SN
    Mol Biol (Mosk); 2004; 38(6):1059-66. PubMed ID: 15612594
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Utilizations of various uridine 5'-triphosphate analogues by DNA-dependent RNA polymerases I and II purified from liver nuclei of the cherry salmon (Oncorhynchus masou).
    Nakayama C; Saneyoshi M
    J Biochem; 1984 Nov; 96(5):1501-9. PubMed ID: 6526817
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Primer/template-independent synthesis of poly d(A-T) by Taq polymerase.
    Hanaki K; Odawara T; Muramatsu T; Kuchino Y; Masuda M; Yamamoto K; Nozaki C; Mizuno K; Yoshikura H
    Biochem Biophys Res Commun; 1997 Sep; 238(1):113-8. PubMed ID: 9299462
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.