These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 33210146)

  • 1. Stochastic Gain and Loss of Novel Transcribed Open Reading Frames in the Human Lineage.
    Dowling D; Schmitz JF; Bornberg-Bauer E
    Genome Biol Evol; 2020 Nov; 12(11):2183-2195. PubMed ID: 33210146
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Incipient de novo genes can evolve from frozen accidents that escaped rapid transcript turnover.
    Schmitz JF; Ullrich KK; Bornberg-Bauer E
    Nat Ecol Evol; 2018 Oct; 2(10):1626-1632. PubMed ID: 30201962
    [TBL] [Abstract][Full Text] [Related]  

  • 3. De novo ORFs in Drosophila are important to organismal fitness and evolved rapidly from previously non-coding sequences.
    Reinhardt JA; Wanjiru BM; Brant AT; Saelao P; Begun DJ; Jones CD
    PLoS Genet; 2013; 9(10):e1003860. PubMed ID: 24146629
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling Length Changes in De Novo Open Reading Frames during Neutral Evolution.
    Lebherz MK; Iyengar BR; Bornberg-Bauer E
    Genome Biol Evol; 2024 Jul; 16(7):. PubMed ID: 38879874
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Emergence, Retention and Selection: A Trilogy of Origination for Functional De Novo Proteins from Ancestral LncRNAs in Primates.
    Chen JY; Shen QS; Zhou WZ; Peng J; He BZ; Li Y; Liu CJ; Luan X; Ding W; Li S; Chen C; Tan BC; Zhang YE; He A; Li CY
    PLoS Genet; 2015 Jul; 11(7):e1005391. PubMed ID: 26177073
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Turnover of ribosome-associated transcripts from de novo ORFs produces gene-like characteristics available for de novo gene emergence in wild yeast populations.
    Durand É; Gagnon-Arsenault I; Hallin J; Hatin I; Dubé AK; Nielly-Thibault L; Namy O; Landry CR
    Genome Res; 2019 Jun; 29(6):932-943. PubMed ID: 31152050
    [TBL] [Abstract][Full Text] [Related]  

  • 7. De novo birth of functional microproteins in the human lineage.
    Vakirlis N; Vance Z; Duggan KM; McLysaght A
    Cell Rep; 2022 Dec; 41(12):111808. PubMed ID: 36543139
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intergenic ORFs as elementary structural modules of de novo gene birth and protein evolution.
    Papadopoulos C; Callebaut I; Gelly JC; Hatin I; Namy O; Renard M; Lespinet O; Lopes A
    Genome Res; 2021 Dec; 31(12):2303-2315. PubMed ID: 34810219
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Population genomics reveals mechanisms and dynamics of de novo expressed open reading frame emergence in
    Grandchamp A; Kühl L; Lebherz M; Brüggemann K; Parsch J; Bornberg-Bauer E
    Genome Res; 2023 Jun; 33(6):872-890. PubMed ID: 37442576
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proto-genes and de novo gene birth.
    Carvunis AR; Rolland T; Wapinski I; Calderwood MA; Yildirim MA; Simonis N; Charloteaux B; Hidalgo CA; Barbette J; Santhanam B; Brar GA; Weissman JS; Regev A; Thierry-Mieg N; Cusick ME; Vidal M
    Nature; 2012 Jul; 487(7407):370-4. PubMed ID: 22722833
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Translation of Small Open Reading Frames: Roles in Regulation and Evolutionary Innovation.
    Ruiz-Orera J; Albà MM
    Trends Genet; 2019 Mar; 35(3):186-198. PubMed ID: 30606460
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High Polymorphism Levels of De Novo ORFs in a Yoruba Human Population.
    Vara C; Montañés JC; Albà MM
    Genome Biol Evol; 2024 Jul; 16(7):. PubMed ID: 38934859
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phylogenetic patterns of emergence of new genes support a model of frequent de novo evolution.
    Neme R; Tautz D
    BMC Genomics; 2013 Feb; 14():117. PubMed ID: 23433480
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distinguishing protein-coding and noncoding genes in the human genome.
    Clamp M; Fry B; Kamal M; Xie X; Cuff J; Lin MF; Kellis M; Lindblad-Toh K; Lander ES
    Proc Natl Acad Sci U S A; 2007 Dec; 104(49):19428-33. PubMed ID: 18040051
    [TBL] [Abstract][Full Text] [Related]  

  • 15. How antisense transcripts can evolve to encode novel proteins.
    Iyengar BR; Grandchamp A; Bornberg-Bauer E
    Nat Commun; 2024 Jul; 15(1):6187. PubMed ID: 39043684
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancers Facilitate the Birth of De Novo Genes and Gene Integration into Regulatory Networks.
    Majic P; Payne JL
    Mol Biol Evol; 2020 Apr; 37(4):1165-1178. PubMed ID: 31845961
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome Plasticity in Papillomaviruses and De Novo Emergence of E5 Oncogenes.
    Willemsen A; Félez-Sánchez M; Bravo IG
    Genome Biol Evol; 2019 Jun; 11(6):1602-1617. PubMed ID: 31076746
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hundreds of Out-of-Frame Remodeled Gene Families in the Escherichia coli Pangenome.
    Watson AK; Lopez P; Bapteste E
    Mol Biol Evol; 2022 Jan; 39(1):. PubMed ID: 34792602
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Landscape of the Dark Transcriptome Revealed Through Re-mining Massive RNA-Seq Data.
    Li J; Singh U; Arendsee Z; Wurtele ES
    Front Genet; 2021; 12():722981. PubMed ID: 34484307
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    Knopp M; Gudmundsdottir JS; Nilsson T; König F; Warsi O; Rajer F; Ädelroth P; Andersson DI
    mBio; 2019 Jun; 10(3):. PubMed ID: 31164464
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.