BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 33210233)

  • 1. Phosphorescence of thermally altered human bone.
    Krap T; Busscher L; Oostra RJ; Aalders MCG; Duijst W
    Int J Legal Med; 2021 May; 135(3):1025-1034. PubMed ID: 33210233
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Luminescence of thermally altered human skeletal remains.
    Krap T; Nota K; Wilk LS; van de Goot FRW; Ruijter JM; Duijst W; Oostra RJ
    Int J Legal Med; 2017 Jul; 131(4):1165-1177. PubMed ID: 28233101
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temperature-specific spectral shift of luminescing thermally altered human remains.
    Schariatmadary P; Aalders MCG; Oostra RJ; Krap T
    Int J Legal Med; 2023 Jul; 137(4):1277-1286. PubMed ID: 37178277
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Time-resolved room temperature protein phosphorescence: nonexponential decay from single emitting tryptophans.
    Schlyer BD; Schauerte JA; Steel DG; Gafni A
    Biophys J; 1994 Sep; 67(3):1192-202. PubMed ID: 7811933
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Colourimetric analysis of thermally altered human bone samples.
    Krap T; Ruijter JM; Nota K; Karel J; Burgers AL; Aalders MCG; Oostra RJ; Duijst W
    Sci Rep; 2019 Jun; 9(1):8923. PubMed ID: 31222026
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the prevalence of room-temperature protein phosphorescence.
    Vanderkooi JM; Calhoun DB; Englander SW
    Science; 1987 May; 236(4801):568-9. PubMed ID: 3576185
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Research potential and limitations of trace analyses of cremated remains.
    Harbeck M; Schleuder R; Schneider J; Wiechmann I; Schmahl WW; Grupe G
    Forensic Sci Int; 2011 Jan; 204(1-3):191-200. PubMed ID: 20609539
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Erythrosin B phosphorescence monitors molecular mobility and dynamic site heterogeneity in amorphous sucrose.
    Pravinata LC; You Y; Ludescher RD
    Biophys J; 2005 May; 88(5):3551-61. PubMed ID: 15695637
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pre-denaturing transitions in human serum albumin probed using time-resolved phosphorescence.
    Sagoo K; Hirsch R; Johnston P; McLoskey D; Hungerford G
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Apr; 124():611-7. PubMed ID: 24509539
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temperature estimations of heated bone: A questionnaire-based study of accuracy and precision of interpretation of bone colour by forensic and physical anthropologists.
    Krap T; van de Goot FRW; Oostra RJ; Duijst W; Waters-Rist AL
    Leg Med (Tokyo); 2017 Nov; 29():22-28. PubMed ID: 28964985
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Room-temperature metal-activator-free phosphorescence from mesoporous silica.
    Zhao L; Ming T; Chen H; Gong L; Chen J; Wang J
    Phys Chem Chem Phys; 2011 Feb; 13(6):2387-93. PubMed ID: 21113521
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosphorescence characteristics of acetophenone, benzophenone, p-aminobenzophenone and Michler's ketone in various environments.
    Scharf G; Winefordner JD
    Talanta; 1986 Jan; 33(1):17-25. PubMed ID: 18964028
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Room Temperature Phosphorescence of 5,6-Benzoquinoline.
    Chavez J; Ceresa L; Kitchner E; Pham D; Gryczynski Z; Gryczynski I
    Methods Appl Fluoresc; 2023 Apr; 11(2):. PubMed ID: 36958039
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distinguishing thermally altered bones from debris using imaging and fluorescence spectrometry.
    Barreiro MB; Ferreira MT; Makhoul C; Morgado M
    J Forensic Leg Med; 2022 Oct; 91():102416. PubMed ID: 35973316
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differentiation of the local structure around tryptophan 51 and 64 in recombinant human erythropoietin by tryptophan phosphorescence.
    Kerwin BA; Aoki KH; Gonelli M; Strambini GB
    Photochem Photobiol; 2008; 84(5):1172-81. PubMed ID: 18331401
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tryptophan luminescence as a probe of enzyme conformation along the O-acetylserine sulfhydrylase reaction pathway.
    Strambini GB; Cioni P; Cook PF
    Biochemistry; 1996 Jun; 35(25):8392-400. PubMed ID: 8679597
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of lens alpha-crystallin tryptophan microenvironments by room temperature phosphorescence spectroscopy.
    Berger JW; Vanderkooi JM
    Biochemistry; 1989 Jun; 28(13):5501-8. PubMed ID: 2775720
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis and luminescent properties of a novel bluish-white afterglow phosphor, b-Zn3(PO4)2:Hf4+.
    Peng Z; Xu Z; Luo C; Yu J; Zhang G
    Luminescence; 2008; 23(1):14-6. PubMed ID: 18175368
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphorescence measurements of calf gamma-II, III, and IV crystallins at 77 and 293 K.
    Berger JW; Vanderkooi JM; Tallmadge DH; Borkman RF
    Exp Eye Res; 1989 May; 48(5):627-39. PubMed ID: 2737261
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the possibility of direct triplet state excitation of indole.
    Chavez J; Ceresa L; Kitchner E; Kimball J; Shtoyko T; Fudala R; Borejdo J; Gryczynski Z; Gryczynski I
    J Photochem Photobiol B; 2020 Jul; 208():111897. PubMed ID: 32447191
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.