BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

479 related articles for article (PubMed ID: 33210252)

  • 1. In situ phytoremediation of heavy metal-contaminated soil and groundwater: a green inventive approach.
    Shikha D; Singh PK
    Environ Sci Pollut Res Int; 2021 Jan; 28(4):4104-4124. PubMed ID: 33210252
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phytoremediation of heavy metals--concepts and applications.
    Ali H; Khan E; Sajad MA
    Chemosphere; 2013 May; 91(7):869-81. PubMed ID: 23466085
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phytoremediation of Heavy Metal-Contaminated Sites: Eco-environmental Concerns, Field Studies, Sustainability Issues, and Future Prospects.
    Saxena G; Purchase D; Mulla SI; Saratale GD; Bharagava RN
    Rev Environ Contam Toxicol; 2020; 249():71-131. PubMed ID: 30806802
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heavy metals pollution from smelting activities: A threat to soil and groundwater.
    Adnan M; Xiao B; Ali MU; Xiao P; Zhao P; Wang H; Bibi S
    Ecotoxicol Environ Saf; 2024 Apr; 274():116189. PubMed ID: 38461579
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Remediation techniques for removal of heavy metals from the soil contaminated through different sources: a review.
    Dhaliwal SS; Singh J; Taneja PK; Mandal A
    Environ Sci Pollut Res Int; 2020 Jan; 27(2):1319-1333. PubMed ID: 31808078
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Phytoremediation of heavy metal contamination and related molecular mechanisms in plants].
    Wang P; Chao D
    Sheng Wu Gong Cheng Xue Bao; 2020 Mar; 36(3):426-435. PubMed ID: 32237537
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phytoremediation: Environmentally sustainable way for reclamation of heavy metal polluted soils.
    Ashraf S; Ali Q; Zahir ZA; Ashraf S; Asghar HN
    Ecotoxicol Environ Saf; 2019 Jun; 174():714-727. PubMed ID: 30878808
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cost-benefit calculation of phytoremediation technology for heavy-metal-contaminated soil.
    Wan X; Lei M; Chen T
    Sci Total Environ; 2016 Sep; 563-564():796-802. PubMed ID: 26765508
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A review on bioremediation approach for heavy metal detoxification and accumulation in plants.
    Yaashikaa PR; Kumar PS; Jeevanantham S; Saravanan R
    Environ Pollut; 2022 May; 301():119035. PubMed ID: 35196562
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phytoremediation of heavy metals in soil and water: An eco-friendly, sustainable and multidisciplinary approach.
    Bhat SA; Bashir O; Ul Haq SA; Amin T; Rafiq A; Ali M; Américo-Pinheiro JHP; Sher F
    Chemosphere; 2022 Sep; 303(Pt 1):134788. PubMed ID: 35504464
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phytoremediation potential of Arundo donax (Giant Reed) in contaminated soil by heavy metals.
    Cristaldi A; Oliveri Conti G; Cosentino SL; Mauromicale G; Copat C; Grasso A; Zuccarello P; Fiore M; Restuccia C; Ferrante M
    Environ Res; 2020 Jun; 185():109427. PubMed ID: 32247150
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Clean-Up of Heavy Metals from Contaminated Soil by Phytoremediation: A Multidisciplinary and Eco-Friendly Approach.
    Priya AK; Muruganandam M; Ali SS; Kornaros M
    Toxics; 2023 May; 11(5):. PubMed ID: 37235237
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phytoremediation: role of terrestrial plants and aquatic macrophytes in the remediation of radionuclides and heavy metal contaminated soil and water.
    Sharma S; Singh B; Manchanda VK
    Environ Sci Pollut Res Int; 2015 Jan; 22(2):946-62. PubMed ID: 25277712
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Potential application of enhanced phytoremediation for heavy metals treatment in Nepal.
    Timalsina H; Gyawali T; Ghimire S; Paudel SR
    Chemosphere; 2022 Nov; 306():135581. PubMed ID: 35798158
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Promises and potential of
    Khan AG
    Int J Phytoremediation; 2020; 22(9):900-915. PubMed ID: 32538143
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A critical review on the phytoremediation of heavy metals from environment: Performance and challenges.
    Shen X; Dai M; Yang J; Sun L; Tan X; Peng C; Ali I; Naz I
    Chemosphere; 2022 Mar; 291(Pt 3):132979. PubMed ID: 34801572
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Technologies for removing heavy metal from contaminated soils on farmland: A review.
    Lin H; Wang Z; Liu C; Dong Y
    Chemosphere; 2022 Oct; 305():135457. PubMed ID: 35753427
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phytoremediation strategies for soils contaminated with heavy metals: Modifications and future perspectives.
    Sarwar N; Imran M; Shaheen MR; Ishaque W; Kamran MA; Matloob A; Rehim A; Hussain S
    Chemosphere; 2017 Mar; 171():710-721. PubMed ID: 28061428
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Insights into decontamination of soils by phytoremediation: A detailed account on heavy metal toxicity and mitigation strategies.
    Rai GK; Bhat BA; Mushtaq M; Tariq L; Rai PK; Basu U; Dar AA; Islam ST; Dar TUH; Bhat JA
    Physiol Plant; 2021 Sep; 173(1):287-304. PubMed ID: 33864701
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Omics approaches in effective selection and generation of potential plants for phytoremediation of heavy metal from contaminated resources.
    Yadav R; Singh G; Santal AR; Singh NP
    J Environ Manage; 2023 Jun; 336():117730. PubMed ID: 36921476
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.