BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

483 related articles for article (PubMed ID: 33210252)

  • 21. Microbial and Plant-Assisted Bioremediation of Heavy Metal Polluted Environments: A Review.
    Ojuederie OB; Babalola OO
    Int J Environ Res Public Health; 2017 Dec; 14(12):. PubMed ID: 29207531
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Role and Mechanism of Low Molecular-Weight-Organic Acids in Enhanced Phytoremediation of Heavy Metal Contaminated Soil].
    Fang ZG; Xie JT; Yang Q; Lu YZ; Huang H; Zhu YX; Yin SM; Wu XT; Du ST
    Huan Jing Ke Xue; 2022 Oct; 43(10):4669-4678. PubMed ID: 36224152
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Plant-driven removal of heavy metals from soil: uptake, translocation, tolerance mechanism, challenges, and future perspectives.
    Thakur S; Singh L; Wahid ZA; Siddiqui MF; Atnaw SM; Din MF
    Environ Monit Assess; 2016 Apr; 188(4):206. PubMed ID: 26940329
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Prospect of phytoremediation combined with other approaches for remediation of heavy metal-polluted soils.
    Liu S; Yang B; Liang Y; Xiao Y; Fang J
    Environ Sci Pollut Res Int; 2020 May; 27(14):16069-16085. PubMed ID: 32173779
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Assessment of heavy metal and metalloid levels and screening potential of tropical plant species for phytoremediation in Singapore.
    Wang Y; Tan SN; Mohd Yusof ML; Ghosh S; Lam YM
    Environ Pollut; 2022 Feb; 295():118681. PubMed ID: 34933060
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Understanding the molecular mechanisms for the enhanced phytoremediation of heavy metals through plant growth promoting rhizobacteria: A review.
    Manoj SR; Karthik C; Kadirvelu K; Arulselvi PI; Shanmugasundaram T; Bruno B; Rajkumar M
    J Environ Manage; 2020 Jan; 254():109779. PubMed ID: 31726280
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Suitability of aromatic plants for phytoremediation of heavy metal contaminated areas: a review.
    Pandey J; Verma RK; Singh S
    Int J Phytoremediation; 2019; 21(5):405-418. PubMed ID: 30656974
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Modelling assisted phytoremediation of soils contaminated with heavy metals - Main opportunities, limitations, decision making and future prospects.
    Jaskulak M; Grobelak A; Vandenbulcke F
    Chemosphere; 2020 Jun; 249():126196. PubMed ID: 32088456
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A review on in situ phytoremediation of mine tailings.
    Wang L; Ji B; Hu Y; Liu R; Sun W
    Chemosphere; 2017 Oct; 184():594-600. PubMed ID: 28623832
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Recent advances in phyto-combined remediation of heavy metal pollution in soil.
    Deng S; Zhang X; Zhu Y; Zhuo R
    Biotechnol Adv; 2024; 72():108337. PubMed ID: 38460740
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: A review.
    Mahar A; Wang P; Ali A; Awasthi MK; Lahori AH; Wang Q; Li R; Zhang Z
    Ecotoxicol Environ Saf; 2016 Apr; 126():111-121. PubMed ID: 26741880
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biochar assisted phytoremediation and biomass disposal in heavy metal contaminated mine soils: a review.
    Ghosh D; Maiti SK
    Int J Phytoremediation; 2021; 23(6):559-576. PubMed ID: 33174450
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biochar-bacteria-plant partnerships: Eco-solutions for tackling heavy metal pollution.
    Harindintwali JD; Zhou J; Yang W; Gu Q; Yu X
    Ecotoxicol Environ Saf; 2020 Nov; 204():111020. PubMed ID: 32810706
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Research progress in phytoremediation of heavy-metal contaminated soils with high-biomass economic plants].
    Jia W; Lü S; Lin K; Ma M; Wu S; Tang Y; Qiu R; Li Y
    Sheng Wu Gong Cheng Xue Bao; 2020 Mar; 36(3):416-425. PubMed ID: 32237536
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Diazotrophs-assisted phytoremediation of heavy metals: a novel approach.
    Ullah A; Mushtaq H; Ali H; Munis MF; Javed MT; Chaudhary HJ
    Environ Sci Pollut Res Int; 2015 Feb; 22(4):2505-14. PubMed ID: 25339525
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biological technologies for the remediation of co-contaminated soil.
    Ye S; Zeng G; Wu H; Zhang C; Dai J; Liang J; Yu J; Ren X; Yi H; Cheng M; Zhang C
    Crit Rev Biotechnol; 2017 Dec; 37(8):1062-1076. PubMed ID: 28427272
    [TBL] [Abstract][Full Text] [Related]  

  • 37. New strategies on the application of artificial intelligence in the field of phytoremediation.
    Singh P; Pani A; Mujumdar AS; Shirkole SS
    Int J Phytoremediation; 2023; 25(4):505-523. PubMed ID: 35802802
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Phytoremediation efficiency of Helianthus annuus L. for reclamation of heavy metals-contaminated industrial soil.
    Chauhan P; Mathur J
    Environ Sci Pollut Res Int; 2020 Aug; 27(24):29954-29966. PubMed ID: 32445141
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biochar from phytoremediation plant residues: a review of its characteristics and potential applications.
    Fan X; Du C; Zhou L; Fang Y; Zhang G; Zou H; Yu G; Wu H
    Environ Sci Pollut Res Int; 2024 Mar; 31(11):16188-16205. PubMed ID: 38329669
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Phytoremediation--a novel and promising approach for environmental clean-up.
    Suresh B; Ravishankar GA
    Crit Rev Biotechnol; 2004; 24(2-3):97-124. PubMed ID: 15493528
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 25.