These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 33210533)

  • 41. Manipulating nanoscale contact electrification by an applied electric field.
    Zhou YS; Wang S; Yang Y; Zhu G; Niu S; Lin ZH; Liu Y; Wang ZL
    Nano Lett; 2014 Mar; 14(3):1567-72. PubMed ID: 24479730
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Direct probing of contact electrification by using optical second harmonic generation technique.
    Chen X; Taguchi D; Manaka T; Iwamoto M; Wang ZL
    Sci Rep; 2015 Aug; 5():13019. PubMed ID: 26272162
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Water-solid surface contact electrification and its use for harvesting liquid-wave energy.
    Lin ZH; Cheng G; Lin L; Lee S; Wang ZL
    Angew Chem Int Ed Engl; 2013 Nov; 52(48):12545-9. PubMed ID: 24123530
    [No Abstract]   [Full Text] [Related]  

  • 44. Spin-selected electron transfer in liquid-solid contact electrification.
    Lin S; Zhu L; Tang Z; Wang ZL
    Nat Commun; 2022 Sep; 13(1):5230. PubMed ID: 36064784
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Tribological Properties and Electrification Performance of Patterned Surface for Sliding-Mode Triboelectric Nanogenerator.
    Hu Y; Wang X; Li H; Li Z; Sun N
    Langmuir; 2019 Jul; 35(29):9396-9401. PubMed ID: 31251068
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Air-gap embedded triboelectric nanogenerator
    Kim I; Roh H; Choi W; Kim D
    Nanoscale; 2021 May; 13(19):8837-8847. PubMed ID: 33950055
    [TBL] [Abstract][Full Text] [Related]  

  • 47. All-Weather Droplet-Based Triboelectric Nanogenerator for Wave Energy Harvesting.
    Wei X; Zhao Z; Zhang C; Yuan W; Wu Z; Wang J; Wang ZL
    ACS Nano; 2021 Aug; 15(8):13200-13208. PubMed ID: 34327988
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Charging of multiple interacting particles by contact electrification.
    Soh S; Liu H; Cademartiri R; Yoon HJ; Whitesides GM
    J Am Chem Soc; 2014 Sep; 136(38):13348-54. PubMed ID: 25171262
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Enhanced triboelectric nanogenerators and triboelectric nanosensor using chemically modified TiO2 nanomaterials.
    Lin ZH; Xie Y; Yang Y; Wang S; Zhu G; Wang ZL
    ACS Nano; 2013 May; 7(5):4554-60. PubMed ID: 23597018
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Automatic Mode Transition Enabled Robust Triboelectric Nanogenerators.
    Chen J; Yang J; Guo H; Li Z; Zheng L; Su Y; Wen Z; Fan X; Wang ZL
    ACS Nano; 2015 Dec; 9(12):12334-43. PubMed ID: 26529374
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Freestanding Flag-Type Triboelectric Nanogenerator for Harvesting High-Altitude Wind Energy from Arbitrary Directions.
    Zhao Z; Pu X; Du C; Li L; Jiang C; Hu W; Wang ZL
    ACS Nano; 2016 Feb; 10(2):1780-7. PubMed ID: 26738695
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Electron Transfer in Nanoscale Contact Electrification: Photon Excitation Effect.
    Lin S; Xu L; Zhu L; Chen X; Wang ZL
    Adv Mater; 2019 Jul; 31(27):e1901418. PubMed ID: 31095783
    [TBL] [Abstract][Full Text] [Related]  

  • 53. High-Electrification Performance and Mechanism of a Water-Solid Mode Triboelectric Nanogenerator.
    You J; Shao J; He Y; Yun FF; See KW; Wang ZL; Wang X
    ACS Nano; 2021 May; 15(5):8706-8714. PubMed ID: 33913695
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Understanding contact electrification at liquid-solid interfaces from surface electronic structure.
    Sun M; Lu Q; Wang ZL; Huang B
    Nat Commun; 2021 Mar; 12(1):1752. PubMed ID: 33741951
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Robust triboelectric nanogenerator based on rolling electrification and electrostatic induction at an instantaneous energy conversion efficiency of ∼ 55%.
    Lin L; Xie Y; Niu S; Wang S; Yang PK; Wang ZL
    ACS Nano; 2015 Jan; 9(1):922-30. PubMed ID: 25555045
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Achieving ultrahigh triboelectric charge density for efficient energy harvesting.
    Wang J; Wu C; Dai Y; Zhao Z; Wang A; Zhang T; Wang ZL
    Nat Commun; 2017 Jul; 8(1):88. PubMed ID: 28729530
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Nonintrusion Monitoring of Droplet Motion State
    Song Z; Zhang X; Wang Z; Ren T; Long W; Cheng T; Wang ZL
    ACS Nano; 2021 Nov; 15(11):18557-18565. PubMed ID: 34672521
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The Influence of Microscale Surface Roughness on Water-Droplet Contact Electrification.
    Helseth LE
    Langmuir; 2019 Jun; 35(25):8268-8275. PubMed ID: 31142118
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Application of Displacement-Current-Governed Triboelectric Nanogenerator in an Electrostatic Discharge Protection System for the Next-Generation Green Tire.
    Wu W; Yang T; Zhang Y; Wang F; Nie Q; Ma Y; Cao X; Wang ZL; Wang N; Zhang L
    ACS Nano; 2019 Jul; 13(7):8202-8212. PubMed ID: 31244038
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Particle-Laden Droplet-Driven Triboelectric Nanogenerator for Real-Time Sediment Monitoring Using a Deep Learning Method.
    Yang L; Wang Y; Zhao Z; Guo Y; Chen S; Zhang W; Guo X
    ACS Appl Mater Interfaces; 2020 Aug; 12(34):38192-38201. PubMed ID: 32846471
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.