These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 33210618)

  • 1. Self-organized multicellular structures from simple cell signaling: a computational model.
    Mulberry N; Edelstein-Keshet L
    Phys Biol; 2020 Nov; 17(6):066003. PubMed ID: 33210618
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Parameterized Computational Framework for the Description and Design of Genetic Circuits of Morphogenesis Based on Contact-Dependent Signaling and Changes in Cell-Cell Adhesion.
    Lam C; Saluja S; Courcoubetis G; Yu D; Chung C; Courte J; Morsut L
    ACS Synth Biol; 2022 Apr; 11(4):1417-1439. PubMed ID: 35363477
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational cell model based on autonomous cell movement regulated by cell-cell signalling successfully recapitulates the "inside and outside" pattern of cell sorting.
    Maeda TT; Ajioka I; Nakajima K
    BMC Syst Biol; 2007 Sep; 1():43. PubMed ID: 17883828
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mathematical and In Silico Analysis of Synthetic Inhibitory Circuits That Program Self-Organizing Multicellular Structures.
    Lam C
    ACS Synth Biol; 2024 Jun; 13(6):1925-1940. PubMed ID: 38781040
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Programming self-organizing multicellular structures with synthetic cell-cell signaling.
    Toda S; Blauch LR; Tang SKY; Morsut L; Lim WA
    Science; 2018 Jul; 361(6398):156-162. PubMed ID: 29853554
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Synthetic Bacterial Cell-Cell Adhesion Toolbox for Programming Multicellular Morphologies and Patterns.
    Glass DS; Riedel-Kruse IH
    Cell; 2018 Jul; 174(3):649-658.e16. PubMed ID: 30033369
    [TBL] [Abstract][Full Text] [Related]  

  • 8. From energy to cellular forces in the Cellular Potts Model: An algorithmic approach.
    Rens EG; Edelstein-Keshet L
    PLoS Comput Biol; 2019 Dec; 15(12):e1007459. PubMed ID: 31825952
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Programming Juxtacrine-Based Synthetic Signaling Networks in a Cellular Potts Framework.
    Lam C; Morsut L
    Methods Mol Biol; 2024; 2760():283-307. PubMed ID: 38468095
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of cell polarity dynamics and motility in pattern formation due to contact-dependent signalling.
    Bajpai S; Prabhakar R; Chelakkot R; Inamdar MM
    J R Soc Interface; 2021 Feb; 18(175):20200825. PubMed ID: 33561375
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiscale computational analysis of Xenopus laevis morphogenesis reveals key insights of systems-level behavior.
    Robertson SH; Smith CK; Langhans AL; McLinden SE; Oberhardt MA; Jakab KR; Dzamba B; DeSimone DW; Papin JA; Peirce SM
    BMC Syst Biol; 2007 Oct; 1():46. PubMed ID: 17953751
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intercellular mechanotransduction during multicellular morphodynamics.
    Kim JH; Dooling LJ; Asthagiri AR
    J R Soc Interface; 2010 Jun; 7 Suppl 3(Suppl 3):S341-50. PubMed ID: 20356878
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational study of the self-assembly of two different cell populations in contact with a biomaterial.
    Robu A; Stoicu-Tivadar L; Robu N; Neagu A
    Stud Health Technol Inform; 2015; 210():761-5. PubMed ID: 25991256
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A multi-cell, multi-scale model of vertebrate segmentation and somite formation.
    Hester SD; Belmonte JM; Gens JS; Clendenon SG; Glazier JA
    PLoS Comput Biol; 2011 Oct; 7(10):e1002155. PubMed ID: 21998560
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The cellular basis of cell sorting kinetics.
    Voss-Böhme A; Deutsch A
    J Theor Biol; 2010 Apr; 263(4):419-36. PubMed ID: 20026134
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Continuous Dynamic Modeling of Regulated Cell Adhesion: Sorting, Intercalation, and Involution.
    Ko JM; Lobo D
    Biophys J; 2019 Dec; 117(11):2166-2179. PubMed ID: 31732144
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intermediate adhesion maximizes migration velocity of multicellular clusters.
    Roy U; Mugler A
    Phys Rev E; 2021 Mar; 103(3-1):032410. PubMed ID: 33862697
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automatic validation of computational models using pseudo-3D spatio-temporal model checking.
    Pârvu O; Gilbert D
    BMC Syst Biol; 2014 Dec; 8():124. PubMed ID: 25440773
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intercellular communication and the organization of simple multicellular animals.
    Japón P; Jiménez-Morales F; Casares F
    Cells Dev; 2022 Mar; 169():203726. PubMed ID: 34450344
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrative systems and synthetic biology of cell-matrix adhesion sites.
    Zamir E
    Cell Adh Migr; 2016 Sep; 10(5):451-460. PubMed ID: 26853318
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.