These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 33210920)

  • 21. Tunneling ultramicroelectrode: nanoelectrodes and nanoparticle collisions.
    Kim J; Kim BK; Cho SK; Bard AJ
    J Am Chem Soc; 2014 Jun; 136(23):8173-6. PubMed ID: 24857267
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In Situ Probing Liquid/Liquid Interfacial Kinetics through Single Nanodroplet Electrochemistry.
    Moon H; Park JH
    Anal Chem; 2021 Dec; 93(50):16915-16921. PubMed ID: 34860502
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Various Current Responses of Single Silver Nanoparticle Collisions on a Gold Ultramicroelectrode Depending on the Collision Conditions.
    Mun SK; Lee S; Kim DY; Kwon SJ
    Chem Asian J; 2017 Sep; 12(18):2434-2440. PubMed ID: 28662286
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Electrochemical reactions in subfemtoliter-droplets studied with plasmonics-based electrochemical current microscopy.
    Wang Y; Shan X; Cui F; Li J; Wang S; Tao N
    Anal Chem; 2015 Jan; 87(1):494-8. PubMed ID: 25479127
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Potential-controlled current responses from staircase to blip in single Pt nanoparticle collisions on a Ni ultramicroelectrode.
    Jung AR; Lee S; Joo JW; Shin C; Bae H; Moon SG; Kwon SJ
    J Am Chem Soc; 2015 Feb; 137(5):1762-5. PubMed ID: 25607323
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The Microelectrode Insulator Influences Water Nanodroplet Collisions.
    Vannoy KJ; Renault C; Dick JE
    Anal Chem; 2023 May; 95(18):7286-7293. PubMed ID: 37092981
    [TBL] [Abstract][Full Text] [Related]  

  • 27. In Situ Measurement of the Size Distribution and Concentration of Insulating Particles by Electrochemical Collision on Hemispherical Ultramicroelectrodes.
    Deng Z; Elattar R; Maroun F; Renault C
    Anal Chem; 2018 Nov; 90(21):12923-12929. PubMed ID: 30284818
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Determination of Serotonin Concentration in Single Human Platelets through Single-Entity Electrochemistry.
    Lee J; Kang Y; Chang J; Song J; Kim BK
    ACS Sens; 2020 Jul; 5(7):1943-1948. PubMed ID: 32498511
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Observation of Single Pt Nanoparticle Collisions: Enhanced Electrocatalytic Activity on a Pd Ultramicroelectrode.
    Shin C; Park TE; Park C; Kwon SJ
    Chemphyschem; 2016 Jun; 17(11):1637-41. PubMed ID: 26955784
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fluorescence Monitored Voltammetry of Single Attoliter Droplets.
    Batchelor-McAuley C; Little CA; Sokolov SV; Kätelhön E; Zampardi G; Compton RG
    Anal Chem; 2016 Nov; 88(22):11213-11221. PubMed ID: 27748588
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Exploring single-entity electrochemistry beyond conventional potential windows: mechanistic insights into hydrazine/hydrazinium ion oxidation.
    Kim KJ; Han Y; Kwon SJ
    Nanoscale; 2024 Oct; 16(39):18488-18493. PubMed ID: 39264321
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Electrochemistry of single droplets of inverse (water-in-oil) emulsions.
    Zhang H; Sepunaru L; Sokolov SV; Laborda E; Batchelor-McAuley C; Compton RG
    Phys Chem Chem Phys; 2017 Jun; 19(24):15662-15666. PubMed ID: 28607991
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Crystalline silica particle functionalized by PEG for its collision-enhanced detection at ultramicroelectrode.
    Liu X; Chen X; Zhang L; Twum KJ; Wang X; Xu Y; Zeng X
    Anal Chim Acta; 2023 Jun; 1260():341178. PubMed ID: 37121651
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Pt Nanoparticle Collisions Detected by Electrocatalytic Amplification and Atomic Force Microscopy Imaging: Nanoparticle Collision Frequency, Adsorption, and Random Distribution at an Ultramicroelectrode Surface.
    Ortiz-Ledón CA; Zoski CG
    Anal Chem; 2017 Jun; 89(12):6424-6431. PubMed ID: 28541030
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Single-Particle Investigation of Environmental Redox Processes of Arsenic on Cerium Oxide Nanoparticles by Collision Electrochemistry.
    Karimi A; Andreescu S; Andreescu D
    ACS Appl Mater Interfaces; 2019 Jul; 11(27):24725-24734. PubMed ID: 31190542
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Direct Observation of the Collision of Single Pt Nanoparticles onto Single-Crystalline Gold Nanowire Electrodes.
    Shin C; Bae H; Kang M; Kim B; Kwon SJ
    Chem Asian J; 2016 Aug; 11(15):2181-7. PubMed ID: 27305586
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Observing Phase Transition of a Temperature-Responsive Polymer Using Electrochemical Collisions on an Ultramicroelectrode.
    Hoang NTT; Lee J; Lee B; Kim HY; Lee J; Nguyen TL; Seo M; Kim SY; Kim BK
    Anal Chem; 2018 Jun; 90(12):7261-7266. PubMed ID: 29847933
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Average collision velocity of single yeast cells during electrochemically induced impacts.
    Lutkenhaus JA; Ahmed JU; Hasan M; Prosser DC; Alvarez JC
    Analyst; 2024 May; 149(11):3214-3223. PubMed ID: 38656271
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Temperature-induced coalescence of colliding binary droplets on superhydrophobic surface.
    Yi N; Huang B; Dong L; Quan X; Hong F; Tao P; Song C; Shang W; Deng T
    Sci Rep; 2014 Mar; 4():4303. PubMed ID: 24603362
    [TBL] [Abstract][Full Text] [Related]  

  • 40. DNA analysis by application of Pt nanoparticle electrochemical amplification with single label response.
    Kwon SJ; Bard AJ
    J Am Chem Soc; 2012 Jul; 134(26):10777-9. PubMed ID: 22702801
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.