These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
238 related articles for article (PubMed ID: 33211015)
41. The Age of Data-Driven Proteomics: How Machine Learning Enables Novel Workflows. Bouwmeester R; Gabriels R; Van Den Bossche T; Martens L; Degroeve S Proteomics; 2020 Nov; 20(21-22):e1900351. PubMed ID: 32267083 [TBL] [Abstract][Full Text] [Related]
42. Minding the Gap: A Qualitative Study of Provider Experience to Optimize Care for Critically Ill Children in General Emergency Departments. Query LA; Olson KR; Meyer MT; Drendel AL Acad Emerg Med; 2019 Jul; 26(7):803-813. PubMed ID: 30267596 [TBL] [Abstract][Full Text] [Related]
43. Retrospective Observational Study of the Clinical Performance Characteristics of a Machine Learning Approach to Early Sepsis Identification. Topiwala R; Patel K; Twigg J; Rhule J; Meisenberg B Crit Care Explor; 2019 Sep; 1(9):e0046. PubMed ID: 32166288 [TBL] [Abstract][Full Text] [Related]
44. Ontario's emergency department process improvement program: the experience of implementation. Rotteau L; Webster F; Salkeld E; Hellings C; Guttmann A; Vermeulen MJ; Bell RS; Zwarenstein M; Rowe BH; Nigam A; Schull MJ; Acad Emerg Med; 2015 Jun; 22(6):720-9. PubMed ID: 25996451 [TBL] [Abstract][Full Text] [Related]
45. Barriers and supportive conditions to improve quality of care for critically ill patients: A team approach to quality improvement. Matthaeus-Kraemer CT; Thomas-Rueddel DO; Schwarzkopf D; Rueddel H; Poidinger B; Reinhart K; Bloos F J Crit Care; 2015 Aug; 30(4):685-91. PubMed ID: 25891644 [TBL] [Abstract][Full Text] [Related]
46. Designing machine learning workflows with an application to topological data analysis. Cawi E; La Rosa PS; Nehorai A PLoS One; 2019; 14(12):e0225577. PubMed ID: 31790458 [TBL] [Abstract][Full Text] [Related]
47. Early detection and treatment of severe sepsis in the emergency department: identifying barriers to implementation of a protocol-based approach. Burney M; Underwood J; McEvoy S; Nelson G; Dzierba A; Kauari V; Chong D J Emerg Nurs; 2012 Nov; 38(6):512-7. PubMed ID: 22079648 [TBL] [Abstract][Full Text] [Related]
48. Developing Machine Learning Models for Behavioral Coding. Idalski Carcone A; Hasan M; Alexander GL; Dong M; Eggly S; Brogan Hartlieb K; Naar S; MacDonell K; Kotov A J Pediatr Psychol; 2019 Apr; 44(3):289-299. PubMed ID: 30698755 [TBL] [Abstract][Full Text] [Related]
49. Perceived barriers to therapeutic hypothermia for patients resuscitated from cardiac arrest: a qualitative study of emergency department and critical care workers. Toma A; Bensimon CM; Dainty KN; Rubenfeld GD; Morrison LJ; Brooks SC Crit Care Med; 2010 Feb; 38(2):504-9. PubMed ID: 20016377 [TBL] [Abstract][Full Text] [Related]
50. Exploring Chiropractic Services in the Canadian Forces Health Services - Perceptions of Facilitators and Barriers Among Key Informants. Mior SA; Vogel E; Sutton D; French S; Côté P; Nordin M; Loisel P; Laporte A Mil Med; 2019 May; 184(5-6):e344-e351. PubMed ID: 30462275 [TBL] [Abstract][Full Text] [Related]
51. Workflow Requirements for Cost-of-Care Conversations in Outpatient Settings Providing Oncology or Primary Care: A Qualitative, Human-Centered Design Study. Henrikson NB; Banegas MP; Tuzzio L; Lim C; Schneider JL; Walsh-Bailey C; Scrol A; Hodge SM Ann Intern Med; 2019 May; 170(9_Suppl):S70-S78. PubMed ID: 31060061 [TBL] [Abstract][Full Text] [Related]
52. 'When you're it': a qualitative study exploring the rural nurse experience of managing acute mental health presentations. Beks H; Healey C; Schlicht KG Rural Remote Health; 2018 Aug; 18(3):4616. PubMed ID: 30081643 [TBL] [Abstract][Full Text] [Related]
53. Practices of Depression Care in Home Health Care: Home Health Clinician Perspectives. Bao Y; Eggman AA; Richardson JE; Sheeran TF; Bruce ML Psychiatr Serv; 2015 Dec; 66(12):1365-8. PubMed ID: 26423098 [TBL] [Abstract][Full Text] [Related]
55. Healthcare providers' perspectives on perceived barriers and facilitators of compassion: Results from a grounded theory study. Singh P; Raffin-Bouchal S; McClement S; Hack TF; Stajduhar K; Hagen NA; Sinnarajah A; Chochinov HM; Sinclair S J Clin Nurs; 2018 May; 27(9-10):2083-2097. PubMed ID: 29575539 [TBL] [Abstract][Full Text] [Related]
56. Ordinal labels in machine learning: a user-centered approach to improve data validity in medical settings. Seveso A; Campagner A; Ciucci D; Cabitza F BMC Med Inform Decis Mak; 2020 Aug; 20(Suppl 5):142. PubMed ID: 32819345 [TBL] [Abstract][Full Text] [Related]
57. Acceptance of lean redesigns in primary care: A contextual analysis. Hung D; Gray C; Martinez M; Schmittdiel J; Harrison MI Health Care Manage Rev; 2017; 42(3):203-212. PubMed ID: 26939032 [TBL] [Abstract][Full Text] [Related]
58. Modeling workflow to design machine translation applications for public health practice. Turner AM; Brownstein MK; Cole K; Karasz H; Kirchhoff K J Biomed Inform; 2015 Feb; 53():136-46. PubMed ID: 25445922 [TBL] [Abstract][Full Text] [Related]
59. Not just trust: factors influencing learners' attempts to perform technical skills on real patients. Bannister SL; Dolson MS; Lingard L; Keegan DA Med Educ; 2018 Jun; 52(6):605-619. PubMed ID: 29446155 [TBL] [Abstract][Full Text] [Related]
60. Expert-augmented machine learning. Gennatas ED; Friedman JH; Ungar LH; Pirracchio R; Eaton E; Reichmann LG; Interian Y; Luna JM; Simone CB; Auerbach A; Delgado E; van der Laan MJ; Solberg TD; Valdes G Proc Natl Acad Sci U S A; 2020 Mar; 117(9):4571-4577. PubMed ID: 32071251 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]