These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
238 related articles for article (PubMed ID: 33211015)
101. Can Machine Learning Personalize Cardiovascular Therapy in Sepsis? Catling FJR; Nagendran M; Festor P; Bien Z; Harris S; Faisal AA; Gordon AC; Komorowski M Crit Care Explor; 2024 May; 6(5):e1087. PubMed ID: 38709088 [TBL] [Abstract][Full Text] [Related]
102. Understanding the adoption of digital workflows in orthotic & prosthetic practice from practitioner perspectives: a qualitative descriptive study. Ngan CC; Sivasambu H; Kelland K; Ramdial S; Andrysek J Prosthet Orthot Int; 2022 Jun; 46(3):282-289. PubMed ID: 35315819 [TBL] [Abstract][Full Text] [Related]
103. Developing machine learning systems worthy of trust for infection science: a requirement for future implementation into clinical practice. McFadden BR; Reynolds M; Inglis TJJ Front Digit Health; 2023; 5():1260602. PubMed ID: 37829595 [TBL] [Abstract][Full Text] [Related]
104. Sepsis biomarkers and diagnostic tools with a focus on machine learning. Komorowski M; Green A; Tatham KC; Seymour C; Antcliffe D EBioMedicine; 2022 Dec; 86():104394. PubMed ID: 36470834 [TBL] [Abstract][Full Text] [Related]
106. Healthcare provider evaluation of machine learning-directed care: reactions to deployment on a randomised controlled study. Hong JC; Patel P; Eclov NCW; Stephens SJ; Mowery YM; Tenenbaum JD; Palta M BMJ Health Care Inform; 2023 Feb; 30(1):. PubMed ID: 36764680 [TBL] [Abstract][Full Text] [Related]
107. PIXE based, Machine-Learning (PIXEL) supported workflow for glass fragments classification. Kaspi O; Girshevitz O; Senderowitz H Talanta; 2021 Nov; 234():122608. PubMed ID: 34364421 [TBL] [Abstract][Full Text] [Related]
108. Perspective Toward Machine Learning Implementation in Pediatric Medicine: Mixed Methods Study. Alexander N; Aftandilian C; Guo LL; Plenert E; Posada J; Fries J; Fleming S; Johnson A; Shah N; Sung L JMIR Med Inform; 2022 Nov; 10(11):e40039. PubMed ID: 36394938 [TBL] [Abstract][Full Text] [Related]
109. A sepsis early warning system is associated with improved patient outcomes. Kennedy JN; Rudd KE Cell Rep Med; 2022 Sep; 3(9):100746. PubMed ID: 36130478 [TBL] [Abstract][Full Text] [Related]
110. A Machine Learning Understanding of Sepsis. Shetty M; Alex SM; Moni M; Edathadathil F; Prasanna P; Menon V; Menon VP; Athri P; Srinivasa G Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():2175-2179. PubMed ID: 34891719 [TBL] [Abstract][Full Text] [Related]
111. Examining the Determinants of Patient Perception of Physician Review Helpfulness across Different Disease Severities: A Machine Learning Approach. Shah AM; Muhammad W; Lee K Comput Intell Neurosci; 2022; 2022():8623586. PubMed ID: 35256881 [TBL] [Abstract][Full Text] [Related]
112. Considerations for Quality Control Monitoring of Machine Learning Models in Clinical Practice. Faust L; Wilson P; Asai S; Fu S; Liu H; Ruan X; Storlie C JMIR Med Inform; 2024 Jun; 12():e50437. PubMed ID: 38941140 [TBL] [Abstract][Full Text] [Related]
113. My Model is Unfair, Do People Even Care? Visual Design Affects Trust and Perceived Bias in Machine Learning. Gaba A; Kaufman Z; Cheung J; Shvakel M; Hall KW; Brun Y; Bearfield CX IEEE Trans Vis Comput Graph; 2024 Jan; 30(1):327-337. PubMed ID: 37878441 [TBL] [Abstract][Full Text] [Related]
114. Integrating Human Patterns of Qualitative Coding with Machine Learning: A Pilot Study Involving Technology-Induced Error Incident Reports. Borycki EM; Farghali A; Kushniruk AW Stud Health Technol Inform; 2022 Jun; 295():276-280. PubMed ID: 35773862 [TBL] [Abstract][Full Text] [Related]
115. Leveraging History to Predict Infrequent Abnormal Transfers in Distributed Workflows. Shao R; Sim A; Wu K; Kim J Sensors (Basel); 2023 Jun; 23(12):. PubMed ID: 37420657 [TBL] [Abstract][Full Text] [Related]
116. Rethinking PICO in the Machine Learning Era: ML-PICO. Liu X; Anstey J; Li R; Sarabu C; Sono R; Butte AJ Appl Clin Inform; 2021 Mar; 12(2):407-416. PubMed ID: 34010977 [TBL] [Abstract][Full Text] [Related]
117. Lessons in machine learning model deployment learned from sepsis. Lyons PG; Singh K Med; 2022 Sep; 3(9):597-599. PubMed ID: 36087573 [TBL] [Abstract][Full Text] [Related]
118. Speaking of sepsis: semantics, syntax, and slang. Inglis TJJ Front Med (Lausanne); 2023; 10():1250499. PubMed ID: 37942414 [TBL] [Abstract][Full Text] [Related]
119. Database-based machine learning in sepsis deserves attention. Hu W; Yang M; Chen H Intensive Care Med; 2023 Feb; 49(2):262-263. PubMed ID: 36592206 [No Abstract] [Full Text] [Related]
120. Trust in Machine Learning Models for Mortality Prediction Following Mitral TEER: Are We Ready Yet? Modine T; Perrin N; Ben Ali W JACC Cardiovasc Interv; 2021 Sep; 14(18):2037-2038. PubMed ID: 34556278 [No Abstract] [Full Text] [Related] [Previous] [Next] [New Search]