These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 33211126)

  • 1. Challenges and opportunities for on-line monitoring of chlorine-produced oxidants in seawater using portable membrane-introduction Fourier transform-ion cyclotron resonance mass spectrometry.
    Roumiguières A; Bouchonnet S; Kinani S
    Anal Bioanal Chem; 2021 Jan; 413(3):885-900. PubMed ID: 33211126
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tracking Monochloramine Decomposition in MIMS Analysis.
    Roumiguières A; Kinani S; Bouchonnet S
    Sensors (Basel); 2019 Dec; 20(1):. PubMed ID: 31906242
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Screening of synthetic PDE-5 inhibitors and their analogues as adulterants: analytical techniques and challenges.
    Patel DN; Li L; Kee CL; Ge X; Low MY; Koh HL
    J Pharm Biomed Anal; 2014 Jan; 87():176-90. PubMed ID: 23721687
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Critical Review on Chemical Speciation of Chlorine-Produced Oxidants in Seawater. Part 3: Chromatographic- and Mass Spectrometric-Based Methodologies.
    Roumiguières A; Bouchonnet S; Kinani S
    Crit Rev Anal Chem; 2023 Jun; ():1-15. PubMed ID: 37347617
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of a novel extraction-based colorimetric (ABTS) method with membrane introduction mass spectrometry (MIMS): trichloramine dynamics in pool water.
    Soltermann F; Widler T; Canonica S; von Gunten U
    Water Res; 2014 Jul; 58():258-68. PubMed ID: 24769062
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Critical Review on Chemical Speciation of Chlorine-Produced Oxidants (CPOs) in Seawater. Part 1: Chlorine Chemistry in Seawater and Its Consequences in Terms of Biocidal Effectiveness and Environmental Impact.
    Kinani S; Roumiguières A; Bouchonnet S
    Crit Rev Anal Chem; 2022 Nov; ():1-14. PubMed ID: 36325800
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fourier Transform Ion Cyclotron Resonance Mass Spectrometry at the Cyclotron Frequency.
    Nagornov KO; Kozhinov AN; Tsybin YO
    J Am Soc Mass Spectrom; 2017 Apr; 28(4):768-780. PubMed ID: 28213728
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differentiating Fragmentation Pathways of Cholesterol by Two-Dimensional Fourier Transform Ion Cyclotron Resonance Mass Spectrometry.
    van Agthoven MA; Barrow MP; Chiron L; Coutouly MA; Kilgour D; Wootton CA; Wei J; Soulby A; Delsuc MA; Rolando C; O'Connor PB
    J Am Soc Mass Spectrom; 2015 Dec; 26(12):2105-14. PubMed ID: 26184984
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A method detection limit for the analysis of natural organic matter via Fourier transform ion cyclotron resonance mass spectrometry.
    Riedel T; Dittmar T
    Anal Chem; 2014 Aug; 86(16):8376-82. PubMed ID: 25068187
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of chemical constituents in Rhodiola Crenulate by high-performance liquid chromatography coupled with Fourier-transform ion cyclotron resonance mass spectrometer (HPLC-FT-ICR MS).
    Han F; Li Y; Mao X; Xu R; Yin R
    J Mass Spectrom; 2016 May; 51(5):363-8. PubMed ID: 27194521
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Front-End Electron Transfer Dissociation Coupled to a 21 Tesla FT-ICR Mass Spectrometer for Intact Protein Sequence Analysis.
    Weisbrod CR; Kaiser NK; Syka JEP; Early L; Mullen C; Dunyach JJ; English AM; Anderson LC; Blakney GT; Shabanowitz J; Hendrickson CL; Marshall AG; Hunt DF
    J Am Soc Mass Spectrom; 2017 Sep; 28(9):1787-1795. PubMed ID: 28721671
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Narrow Aperture Detection Electrodes ICR Cell with Quadrupolar Ion Detection for FT-ICR MS at the Cyclotron Frequency.
    Nagornov KO; Kozhinov AN; Nicol E; Tsybin OY; Touboul D; Brunelle A; Tsybin YO
    J Am Soc Mass Spectrom; 2020 Nov; 31(11):2258-2269. PubMed ID: 32966078
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Compact FTICR Mass Spectrometry for Real Time Monitoring of Volatile Organic Compounds.
    Lemaire J; Thomas S; Lopes A; Louarn E; Mestdagh H; Latappy H; Leprovost J; Heninger M
    Sensors (Basel); 2018 May; 18(5):. PubMed ID: 29751541
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-resolution Fourier transform ion cyclotron resonance mass spectrometry with increased throughput for biomolecular analysis.
    Nagornov KO; Gorshkov MV; Kozhinov AN; Tsybin YO
    Anal Chem; 2014 Sep; 86(18):9020-8. PubMed ID: 25140615
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification and quantification of chloramines, bromamines and bromochloramine by Membrane Introduction Mass Spectrometry (MIMS).
    Hu W; Lauritsen FR; Allard S
    Sci Total Environ; 2021 Jan; 751():142303. PubMed ID: 33182003
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of analytical performance of gas chromatography coupled with atmospheric pressure chemical ionization Fourier transform ion cyclotron resonance mass spectrometry (GC-APCI-FT-ICR-MS) in the target and non-targeted analysis of brominated and chlorinated flame retardants in food.
    Zacs D; Perkons I; Bartkevics V
    Chemosphere; 2019 Jun; 225():368-377. PubMed ID: 30884298
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cyclotron Phase-Coherent Ion Spatial Dispersion in a Non-Quadratic Trapping Potential is Responsible for FT-ICR MS at the Cyclotron Frequency.
    Nagornov KO; Kozhinov AN; Tsybin YO
    J Am Soc Mass Spectrom; 2018 Jan; 29(1):63-77. PubMed ID: 29119518
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of Brominated Disinfection Byproducts Formed During the Chlorination of Aquaculture Seawater.
    Wang J; Hao Z; Shi F; Yin Y; Cao D; Yao Z; Liu J
    Environ Sci Technol; 2018 May; 52(10):5662-5670. PubMed ID: 29701972
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential reactivities of hypochlorous and hypobromous acids with purified Escherichia coli phospholipid: formation of haloamines and halohydrins.
    Carr AC; van den Berg JJ; Winterbourn CC
    Biochim Biophys Acta; 1998 Jun; 1392(2-3):254-64. PubMed ID: 9630661
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fourier transform ion cyclotron resonance (FT ICR) mass spectrometry: Theory and simulations.
    Nikolaev EN; Kostyukevich YI; Vladimirov GN
    Mass Spectrom Rev; 2016; 35(2):219-58. PubMed ID: 24515872
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.