BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 33211340)

  • 1. The AGCVIII kinase Dw2 modulates cell proliferation, endomembrane trafficking, and MLG/xylan cell wall localization in elongating stem internodes of Sorghum bicolor.
    Oliver J; Fan M; McKinley B; Zemelis-Durfee S; Brandizzi F; Wilkerson C; Mullet JE
    Plant J; 2021 Feb; 105(4):1053-1071. PubMed ID: 33211340
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioenergy sorghum stem growth regulation: intercalary meristem localization, development, and gene regulatory network analysis.
    Yu KMJ; Oliver J; McKinley B; Weers B; Fabich HT; Evetts N; Conradi MS; Altobelli SA; Marshall-Colon A; Mullet J
    Plant J; 2022 Oct; 112(2):476-492. PubMed ID: 36038985
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sorghum Dw2 Encodes a Protein Kinase Regulator of Stem Internode Length.
    Hilley JL; Weers BD; Truong SK; McCormick RF; Mattison AJ; McKinley BA; Morishige DT; Mullet JE
    Sci Rep; 2017 Jul; 7(1):4616. PubMed ID: 28676627
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High planting density induces the expression of GA3-oxidase in leaves and GA mediated stem elongation in bioenergy sorghum.
    Yu KMJ; McKinley B; Rooney WL; Mullet JE
    Sci Rep; 2021 Jan; 11(1):46. PubMed ID: 33420129
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamics of biomass partitioning, stem gene expression, cell wall biosynthesis, and sucrose accumulation during development of Sorghum bicolor.
    McKinley B; Rooney W; Wilkerson C; Mullet J
    Plant J; 2016 Nov; 88(4):662-680. PubMed ID: 27411301
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A grass-specific cellulose-xylan interaction dominates in sorghum secondary cell walls.
    Gao Y; Lipton AS; Wittmer Y; Murray DT; Mortimer JC
    Nat Commun; 2020 Nov; 11(1):6081. PubMed ID: 33247125
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetic background impacts soluble and cell wall-bound aromatics in brown midrib mutants of sorghum.
    Palmer NA; Sattler SE; Saathoff AJ; Funnell D; Pedersen JF; Sarath G
    Planta; 2008 Dec; 229(1):115-27. PubMed ID: 18795321
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contribution of sucrose transporters to phloem unloading within Sorghum bicolor stem internodes.
    Milne RJ; Reinders A; Ward JM; Offler CE; Patrick JW; Grof CPL
    Plant Signal Behav; 2017 May; 12(5):e1319030. PubMed ID: 28426383
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Overexpression of SbMyb60 impacts phenylpropanoid biosynthesis and alters secondary cell wall composition in Sorghum bicolor.
    Scully ED; Gries T; Sarath G; Palmer NA; Baird L; Serapiglia MJ; Dien BS; Boateng AA; Ge Z; Funnell-Harris DL; Twigg P; Clemente TE; Sattler SE
    Plant J; 2016 Feb; 85(3):378-95. PubMed ID: 26712107
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nitrogen deficiency results in changes to cell wall composition of sorghum seedlings.
    Rivai RR; Miyamoto T; Awano T; Takada R; Tobimatsu Y; Umezawa T; Kobayashi M
    Sci Rep; 2021 Dec; 11(1):23309. PubMed ID: 34857783
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamics of gene expression during development and expansion of vegetative stem internodes of bioenergy sorghum.
    Kebrom TH; McKinley B; Mullet JE
    Biotechnol Biofuels; 2017; 10():159. PubMed ID: 28649278
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of Dw1, a Regulator of Sorghum Stem Internode Length.
    Hilley J; Truong S; Olson S; Morishige D; Mullet J
    PLoS One; 2016; 11(3):e0151271. PubMed ID: 26963094
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phytoremediation of strontium contaminated soil by Sorghum bicolor (L.) Moench and soil microbial community-level physiological profiles (CLPPs).
    Wang X; Chen C; Wang J
    Environ Sci Pollut Res Int; 2017 Mar; 24(8):7668-7678. PubMed ID: 28124267
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sorghum stem aerenchyma formation is regulated by
    Casto AL; McKinley BA; Yu KMJ; Rooney WL; Mullet JE
    Plant Direct; 2018 Nov; 2(11):e00085. PubMed ID: 31245693
    [No Abstract]   [Full Text] [Related]  

  • 15. Overexpression of the Sorghum bicolor SbCCoAOMT alters cell wall associated hydroxycinnamoyl groups.
    Tetreault HM; Scully ED; Gries T; Palmer NA; Funnell-Harris DL; Baird L; Seravalli J; Dien BS; Sarath G; Clemente TE; Sattler SE
    PLoS One; 2018; 13(10):e0204153. PubMed ID: 30289910
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sucrose Transporter Localization and Function in Phloem Unloading in Developing Stems.
    Milne RJ; Perroux JM; Rae AL; Reinders A; Ward JM; Offler CE; Patrick JW; Grof CP
    Plant Physiol; 2017 Feb; 173(2):1330-1341. PubMed ID: 27986867
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Immunolocalization of hemicelluloses in Arabidopsis thaliana stem. Part I: temporal and spatial distribution of xylans.
    Kim JS; Daniel G
    Planta; 2012 Oct; 236(4):1275-88. PubMed ID: 22711286
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasticity of Sorghum Stem Biomass Accumulation in Response to Water Deficit: A Multiscale Analysis from Internode Tissue to Plant Level.
    Perrier L; Rouan L; Jaffuel S; Clément-Vidal A; Roques S; Soutiras A; Baptiste C; Bastianelli D; Fabre D; Dubois C; Pot D; Luquet D
    Front Plant Sci; 2017; 8():1516. PubMed ID: 28919904
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photosynthetic response of sweet sorghum to drought and re-watering at different growth stages.
    Zegada-Lizarazu W; Monti A
    Physiol Plant; 2013 Sep; 149(1):56-66. PubMed ID: 23198740
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sweet Sorghum Originated through Selection of
    Zhang LM; Leng CY; Luo H; Wu XY; Liu ZQ; Zhang YM; Zhang H; Xia Y; Shang L; Liu CM; Hao DY; Zhou YH; Chu CC; Cai HW; Jing HC
    Plant Cell; 2018 Oct; 30(10):2286-2307. PubMed ID: 30309900
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.