BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 33211787)

  • 1. A reactive oxygen species-responsive antioxidant nanotherapy for the treatment of drug-induced tissue and organ injury.
    Li C; Hu Y; Nie Q; Chen S; Li G; Li L; Chen S; Tang B; Zhang J
    Biomater Sci; 2020 Dec; 8(24):7117-7131. PubMed ID: 33211787
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A pH/ROS dual-responsive and targeting nanotherapy for vascular inflammatory diseases.
    Zhang R; Liu R; Liu C; Pan L; Qi Y; Cheng J; Guo J; Jia Y; Ding J; Zhang J; Hu H
    Biomaterials; 2020 Feb; 230():119605. PubMed ID: 31740099
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Broad-Spectrum ROS-Eliminating Material for Prevention of Inflammation and Drug-Induced Organ Toxicity.
    Li L; Guo J; Wang Y; Xiong X; Tao H; Li J; Jia Y; Hu H; Zhang J
    Adv Sci (Weinh); 2018 Oct; 5(10):1800781. PubMed ID: 30356945
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Multifunctional Nanotherapy for Targeted Treatment of Colon Cancer by Simultaneously Regulating Tumor Microenvironment.
    Zhang Q; Zhang F; Li S; Liu R; Jin T; Dou Y; Zhou Z; Zhang J
    Theranostics; 2019; 9(13):3732-3753. PubMed ID: 31281510
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reactive Oxygen Species-Responsive Transformable and Triple-Targeting Butylphthalide Nanotherapy for Precision Treatment of Ischemic Stroke by Normalizing the Pathological Microenvironment.
    Yang Q; Pu W; Hu K; Hu Y; Feng Z; Cai J; Li C; Li L; Zhou Z; Zhang J
    ACS Nano; 2023 Mar; 17(5):4813-4833. PubMed ID: 36802489
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Targeting Nanotherapy for Abdominal Aortic Aneurysms.
    Cheng J; Zhang R; Li C; Tao H; Dou Y; Wang Y; Hu H; Zhang J
    J Am Coll Cardiol; 2018 Nov; 72(21):2591-2605. PubMed ID: 30466517
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Targeted Therapy of Atherosclerosis by a Broad-Spectrum Reactive Oxygen Species Scavenging Nanoparticle with Intrinsic Anti-inflammatory Activity.
    Wang Y; Li L; Zhao W; Dou Y; An H; Tao H; Xu X; Jia Y; Lu S; Zhang J; Hu H
    ACS Nano; 2018 Sep; 12(9):8943-8960. PubMed ID: 30114351
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Targeted Treatment of Ischemic Stroke by Bioactive Nanoparticle-Derived Reactive Oxygen Species Responsive and Inflammation-Resolving Nanotherapies.
    Yuan J; Li L; Yang Q; Ran H; Wang J; Hu K; Pu W; Huang J; Wen L; Zhou L; Jiang Y; Xiong X; Zhang J; Zhou Z
    ACS Nano; 2021 Oct; 15(10):16076-16094. PubMed ID: 34606239
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reactive oxygen species-responsive polymeric nanoparticles for alleviating sepsis-induced acute liver injury in mice.
    Chen G; Deng H; Song X; Lu M; Zhao L; Xia S; You G; Zhao J; Zhang Y; Dong A; Zhou H
    Biomaterials; 2017 Nov; 144():30-41. PubMed ID: 28820966
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A superoxide dismutase/catalase mimetic nanomedicine for targeted therapy of inflammatory bowel disease.
    Zhang Q; Tao H; Lin Y; Hu Y; An H; Zhang D; Feng S; Hu H; Wang R; Li X; Zhang J
    Biomaterials; 2016 Oct; 105():206-221. PubMed ID: 27525680
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Non-proinflammatory and responsive nanoplatforms for targeted treatment of atherosclerosis.
    Dou Y; Chen Y; Zhang X; Xu X; Chen Y; Guo J; Zhang D; Wang R; Li X; Zhang J
    Biomaterials; 2017 Oct; 143():93-108. PubMed ID: 28778000
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ROS-responsive nano-drug delivery system combining mitochondria-targeting ceria nanoparticles with atorvastatin for acute kidney injury.
    Yu H; Jin F; Liu D; Shu G; Wang X; Qi J; Sun M; Yang P; Jiang S; Ying X; Du Y
    Theranostics; 2020; 10(5):2342-2357. PubMed ID: 32104507
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of a membrane-permeable radical scavenger, Tempol, on intraperitoneal sepsis-induced organ injury in rats.
    Liaw WJ; Chen TH; Lai ZZ; Chen SJ; Chen A; Tzao C; Wu JY; Wu CC
    Shock; 2005 Jan; 23(1):88-96. PubMed ID: 15614137
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antioxidant properties of Taraxacum officinale leaf extract are involved in the protective effect against hepatoxicity induced by acetaminophen in mice.
    Colle D; Arantes LP; Gubert P; da Luz SC; Athayde ML; Teixeira Rocha JB; Soares FA
    J Med Food; 2012 Jun; 15(6):549-56. PubMed ID: 22424457
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Real-time quantification of oxidative stress and the protective effect of nitroxide antioxidants.
    Rayner CL; Bottle SE; Gole GA; Ward MS; Barnett NL
    Neurochem Int; 2016 Jan; 92():1-12. PubMed ID: 26592979
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exogenous recombinant human thioredoxin-1 prevents acetaminophen-induced liver injury by scavenging oxidative stressors, restoring the thioredoxin-1 system and inhibiting receptor interacting protein-3 overexpression.
    Lee BW; Jeon BS; Yoon BI
    J Appl Toxicol; 2018 Jul; 38(7):1008-1017. PubMed ID: 29512171
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lycopene inhibits reactive oxygen species production in SK-Hep-1 cells and attenuates acetaminophen-induced liver injury in C57BL/6 mice.
    Bandeira ACB; da Silva TP; de Araujo GR; Araujo CM; da Silva RC; Lima WG; Bezerra FS; Costa DC
    Chem Biol Interact; 2017 Feb; 263():7-17. PubMed ID: 27989599
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of in vitro tests for antioxidant and immunomodulatory capacities of compounds.
    Becker K; Schroecksnadel S; Gostner J; Zaknun C; Schennach H; Uberall F; Fuchs D
    Phytomedicine; 2014 Jan; 21(2):164-71. PubMed ID: 24041614
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protective effects of p-coumaric acid against acetaminophen-induced hepatotoxicity in mice.
    Cha H; Lee S; Lee JH; Park JW
    Food Chem Toxicol; 2018 Nov; 121():131-139. PubMed ID: 30149109
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antioxidant treatment induces reductive stress associated with mitochondrial dysfunction in adipocytes.
    Peris E; Micallef P; Paul A; Palsdottir V; Enejder A; Bauzá-Thorbrügge M; Olofsson CS; Wernstedt Asterholm I
    J Biol Chem; 2019 Feb; 294(7):2340-2352. PubMed ID: 30559295
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.