BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 33211965)

  • 1. Stercobilin and Urobilin in Aqueous Media: Existence of Specific H-Aggregates and Nonspecific Higher Aggregates at Different Concentrations.
    Prakash S; Mishra AK
    J Phys Chem A; 2020 Dec; 124(48):10053-10065. PubMed ID: 33211965
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photophysics of faecal pigments stercobilin and urobilin in aliphatic alcohols: introduction of a sensitive method for their detection using solvent phase extraction and fluorometry.
    Prakash S; Mishra AK
    Anal Methods; 2021 Dec; 13(46):5573-5588. PubMed ID: 34787126
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Understanding the photophysics of stercobilin-Zn(II) and urobilin-Zn(II) complexes towards faecal pigment analysis.
    Prakash S; Panigrahi SK; Dorner RP; Wagner M; Schmidt W; Mishra AK
    Chemosphere; 2021 Feb; 265():129189. PubMed ID: 33307503
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intriguing H-aggregate and H-dimer formation of coumarin-481 dye in aqueous solution as evidenced from photophysical studies.
    Verma P; Pal H
    J Phys Chem A; 2012 May; 116(18):4473-84. PubMed ID: 22510065
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Speciation of ferriprotoporphyrin IX in aqueous and mixed aqueous solution is controlled by solvent identity, pH, and salt concentration.
    Asher C; de Villiers KA; Egan TJ
    Inorg Chem; 2009 Aug; 48(16):7994-8003. PubMed ID: 19572726
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photophysics of Zinc Porphyrin Aggregates in Dilute Water-Ethanol Solutions.
    Stevens AL; Joshi NK; Paige MF; Steer RP
    J Phys Chem B; 2017 Dec; 121(49):11180-11188. PubMed ID: 29160708
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluorescence kinetics of aqueous solutions of tetracycline and its complexes with Mg2+ and Ca2+.
    Schneider S; Schmitt MO; Brehm G; Reiher M; Matousek P; Towrie M
    Photochem Photobiol Sci; 2003 Nov; 2(11):1107-17. PubMed ID: 14690222
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Water soluble sapphyrins: potential fluorescent phosphate anion sensors.
    Sessler JL; Davis JM; Král V; Kimbrough T; Lynch V
    Org Biomol Chem; 2003 Nov; 1(22):4113-23. PubMed ID: 14664401
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrafast exciton dynamics of J- and H-aggregates of the porphyrin-catechol in aqueous solution.
    Verma S; Ghosh A; Das A; Ghosh HN
    J Phys Chem B; 2010 Jul; 114(25):8327-34. PubMed ID: 20524652
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Studies on the aggregation reactions and basic dye binding of tobacco mosaic virus. I. Variation of pH, particle asymmetry, acid and base titration results, irreversible binding of methylene blue, ultraviolet absorption, and extent of heat denaturation in tobacco mosaic virus solutions with time of standing.
    WELSH RS
    J Gen Physiol; 1956 Jan; 39(3):437-71. PubMed ID: 13286459
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solvent-Directed Transformation of the Self-assembly and Optical Property of a Peptide-Appended Core-Substituted Naphthelenediimide and Selective Detection of Nitrite Ions in an Aqueous Medium.
    Gayen K; Paul S; Hazra S; Banerjee A
    Langmuir; 2021 Aug; 37(31):9577-9587. PubMed ID: 34319747
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluorescence quantum yields of dye aggregates: a showcase example based on self-assembled perylene bisimide dimers.
    Fennel F; Gershberg J; Stolte M; Würthner F
    Phys Chem Chem Phys; 2018 Mar; 20(11):7612-7620. PubMed ID: 29493691
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biphasic self-assembly pathways and size-dependent photophysical properties of perylene bisimide dye aggregates.
    Fennel F; Wolter S; Xie Z; Plötz PA; Kühn O; Würthner F; Lochbrunner S
    J Am Chem Soc; 2013 Dec; 135(50):18722-5. PubMed ID: 24320826
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rhodamine 6G Structural Changes in Water/Ethanol Mixed Solvent.
    Chapman M; Euler WB
    J Fluoresc; 2018 Nov; 28(6):1431-1437. PubMed ID: 30343362
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Amphiphilic Porphyrin Aggregates: A DFT Investigation.
    Sabuzi F; Stefanelli M; Monti D; Conte V; Galloni P
    Molecules; 2019 Dec; 25(1):. PubMed ID: 31905739
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aggregation of Carbocyanine Dyes in Choline Chloride-Based Deep Eutectic Solvents in the Presence of an Aqueous Base.
    Pal M; Yadav A; Pandey S
    Langmuir; 2017 Sep; 33(38):9781-9792. PubMed ID: 28830142
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-assembly of a hydrophobically modified naphthalene-labeled poly(acrylic acid) polyelectrolyte in water: organic solvent mixtures followed by steady-state and time-resolved fluorescence.
    Costa T; Miguel MG; Lindman B; Schillén K; Lima JC; Seixas de Melo J
    J Phys Chem B; 2005 Mar; 109(8):3243-51. PubMed ID: 16851348
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Probing the pi-stacking induced molecular aggregation in pi-conjugated polymers, oligomers, and their blends of p-phenylenevinylenes.
    Amrutha SR; Jayakannan M
    J Phys Chem B; 2008 Jan; 112(4):1119-29. PubMed ID: 18179197
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aggregation studies of dipolar coumarin-153 dye in polar solvents: a photophysical study.
    Verma P; Pal H
    J Phys Chem A; 2014 Aug; 118(34):6950-64. PubMed ID: 25093447
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reviewing the effect of aggregates in Rhodamine 6G aqueous solution on fluorescence quantum efficiency.
    Rocha U; Armas LEG; Silva WF; Dousti MR; Moura AL; Novatski A; Astrath NGC; Jacinto C
    Spectrochim Acta A Mol Biomol Spectrosc; 2024 Sep; 317():124409. PubMed ID: 38733912
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.