These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 33212104)

  • 41. A novel mechanism for small heat shock proteins to function as molecular chaperones.
    Zhang K; Ezemaduka AN; Wang Z; Hu H; Shi X; Liu C; Lu X; Fu X; Chang Z; Yin CC
    Sci Rep; 2015 Mar; 5():8811. PubMed ID: 25744691
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Molecular Cloning and Characterization of Small Heat Shock Protein Genes in the Invasive Leaf Miner Fly,
    Chang YW; Zhang XX; Lu MX; Du YZ; Zhu-Salzman K
    Genes (Basel); 2019 Oct; 10(10):. PubMed ID: 31623413
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Heat causes oligomeric disassembly and increases the chaperone activity of small heat shock proteins from sugarcane.
    Tiroli-Cepeda AO; Ramos CH
    Plant Physiol Biochem; 2010; 48(2-3):108-16. PubMed ID: 20137963
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Small Heat Shock Proteins and Human Neurodegenerative Diseases.
    Muranova LK; Ryzhavskaya AS; Sudnitsyna MV; Shatov VM; Gusev NB
    Biochemistry (Mosc); 2019 Nov; 84(11):1256-1267. PubMed ID: 31760916
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Medical implications of understanding the functions of human small heat shock proteins.
    Mymrikov EV; Haslbeck M
    Expert Rev Proteomics; 2015 Jun; 12(3):295-308. PubMed ID: 25915440
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Protein classification based on text document classification techniques.
    Cheng BY; Carbonell JG; Klein-Seetharaman J
    Proteins; 2005 Mar; 58(4):955-70. PubMed ID: 15645499
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Low-molecular-weight heat shock proteins in a desert fish (Poeciliopsis lucida): homologs of human Hsp27 and Xenopus Hsp30.
    Norris CE; Brown MA; Hickey E; Weber LA; Hightower LE
    Mol Biol Evol; 1997 Oct; 14(10):1050-61. PubMed ID: 9335145
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Small heat shock proteins (sHSPs) as potential drug targets.
    James M; Crabbe C; Hepburne-Scott HW
    Curr Pharm Biotechnol; 2001 Mar; 2(1):77-111. PubMed ID: 11482349
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Class I and II Small Heat Shock Proteins Together with HSP101 Protect Protein Translation Factors during Heat Stress.
    McLoughlin F; Basha E; Fowler ME; Kim M; Bordowitz J; Katiyar-Agarwal S; Vierling E
    Plant Physiol; 2016 Oct; 172(2):1221-1236. PubMed ID: 27474115
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The evolution, function, structure, and expression of the plant sHSPs.
    Waters ER
    J Exp Bot; 2013 Jan; 64(2):391-403. PubMed ID: 23255280
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Identifying Heat Shock Protein Families from Imbalanced Data by Using Combined Features.
    Jing XY; Li FM
    Comput Math Methods Med; 2020; 2020():8894478. PubMed ID: 33029195
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A small heat shock protein (sHSP) from Sinonovacula constricta against heavy metals stresses.
    Zhang A; Lu Y; Li C; Zhang P; Su X; Li Y; Wang C; Li T
    Fish Shellfish Immunol; 2013 Jun; 34(6):1605-10. PubMed ID: 23523751
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Improving the classification of nuclear receptors with feature selection.
    Gao QB; Jin ZC; Ye XF; Wu C; Lu J; He J
    Protein Pept Lett; 2009; 16(7):823-9. PubMed ID: 19601913
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Molecular cloning of a small heat shock protein (sHSPII) from the cattle tick Rhipicephalus (Boophilus) annulatus salivary gland.
    Shahein YE; El-Rahim MT; Hussein NA; Hamed RR; El-Hakim AE; Barakat MM
    Int J Biol Macromol; 2010 Dec; 47(5):614-22. PubMed ID: 20723560
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Proteinaceous Transformers: Structural and Functional Variability of Human sHsps.
    Riedl M; Strauch A; Catici DAM; Haslbeck M
    Int J Mol Sci; 2020 Jul; 21(15):. PubMed ID: 32751672
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Classification of nuclear receptors based on amino acid composition and dipeptide composition.
    Bhasin M; Raghava GP
    J Biol Chem; 2004 May; 279(22):23262-6. PubMed ID: 15039428
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Prediction of oxidoreductase subfamily classes based on RFE-SND-CC-PSSM and machine learning methods.
    Yuan F; Liu G; Yang X; Wang S; Wang X
    J Bioinform Comput Biol; 2019 Aug; 17(4):1950029. PubMed ID: 31617464
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Prediction of Protein Subcellular Localization Based on Fusion of Multi-view Features.
    Li B; Cai L; Liao B; Fu X; Bing P; Yang J
    Molecules; 2019 Mar; 24(5):. PubMed ID: 30845684
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Genetic characterization, structural analysis, and detection of positive selection in small heat shock proteins of Cypriniformes and Clupeiformes.
    Sultana M; Tayyab M; Parveen S; Hussain M; Shafique L
    Fish Physiol Biochem; 2024 Jun; 50(3):843-864. PubMed ID: 38587724
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Identification of two small heat shock proteins with different response profile to cadmium and pathogen stresses in Venerupis philippinarum.
    Li C; Wang L; Ning X; Chen A; Zhang L; Qin S; Wu H; Zhao J
    Cell Stress Chaperones; 2010 Nov; 15(6):897-904. PubMed ID: 20405260
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.