These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 33212230)

  • 1. Use of 2-dimensional cell monolayers and 3-dimensional microvascular networks on microfluidic devices shows that iron increases transendothelial adiponectin flux via inducing ROS production.
    Yoon N; Kim S; Sung HK; Dang TQ; Jeon JS; Sweeney G
    Biochim Biophys Acta Gen Subj; 2021 Feb; 1865(2):129796. PubMed ID: 33212230
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Claudin-5 controls intercellular barriers of human dermal microvascular but not human umbilical vein endothelial cells.
    Kluger MS; Clark PR; Tellides G; Gerke V; Pober JS
    Arterioscler Thromb Vasc Biol; 2013 Mar; 33(3):489-500. PubMed ID: 23288152
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transendothelial movement of adiponectin is restricted by glucocorticoids.
    Dang TQ; Yoon N; Chasiotis H; Dunford EC; Feng Q; He P; Riddell MC; Kelly SP; Sweeney G
    J Endocrinol; 2017 Aug; 234(2):101-114. PubMed ID: 28705835
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional brain-specific microvessels from iPSC-derived human brain microvascular endothelial cells: the role of matrix composition on monolayer formation.
    Katt ME; Linville RM; Mayo LN; Xu ZS; Searson PC
    Fluids Barriers CNS; 2018 Feb; 15(1):7. PubMed ID: 29463314
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tracking adiponectin biodistribution via fluorescence molecular tomography indicates increased vascular permeability after streptozotocin-induced diabetes.
    Yoon N; Dadson K; Dang T; Chu T; Noskovicova N; Hinz B; Raignault A; Thorin E; Kim S; Jeon JS; Jonkman J; McKee TD; Grant J; Peterson JD; Kelly SP; Sweeney G
    Am J Physiol Endocrinol Metab; 2019 Nov; 317(5):E760-E772. PubMed ID: 31310580
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Endothelial permeability and IL-6 production during hypoxia: role of ROS in signal transduction.
    Ali MH; Schlidt SA; Chandel NS; Hynes KL; Schumacker PT; Gewertz BL
    Am J Physiol; 1999 Nov; 277(5):L1057-65. PubMed ID: 10564193
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mucopolysaccharide polysulfate promotes microvascular stabilization and barrier integrity of dermal microvascular endothelial cells via activation of the angiopoietin-1/Tie2 pathway.
    Fujiwara-Sumiyoshi S; Ueda Y; Fujikawa M; Osaki M; Yamanaka N; Matsumoto T
    J Dermatol Sci; 2021 Jul; 103(1):25-32. PubMed ID: 34148739
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of organ-specific endothelial cells in terms of microvascular formation and endothelial barrier functions.
    Uwamori H; Ono Y; Yamashita T; Arai K; Sudo R
    Microvasc Res; 2019 Mar; 122():60-70. PubMed ID: 30472038
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mdia1 is Crucial for Advanced Glycation End Product-Induced Endothelial Hyperpermeability.
    Zhou X; Weng J; Xu J; Xu Q; Wang W; Zhang W; Huang Q; Guo X
    Cell Physiol Biochem; 2018; 45(4):1717-1730. PubMed ID: 29490301
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Leveraging avidin-biotin interaction to quantify permeability property of microvessels-on-a-chip networks.
    Gao F; Sun H; Li X; He P
    Am J Physiol Heart Circ Physiol; 2022 Jan; 322(1):H71-H86. PubMed ID: 34767485
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Establishment of the deuterium oxide dilution method as a new possibility for determining the transendothelial water permeability.
    Müller H; Hahn J; Gierke A; Stark R; Brunner C; Hoffmann TK; Greve J; Wittekindt O; Lochbaum R
    Pflugers Arch; 2024 Jun; 476(6):993-1005. PubMed ID: 38438679
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Propofol inhibits burn injury-induced hyperpermeability through an apoptotic signal pathway in microvascular endothelial cells.
    Tian KY; Liu XJ; Xu JD; Deng LJ; Wang G
    Braz J Med Biol Res; 2015 May; 48(5):401-7. PubMed ID: 25760023
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measurement of Transendothelial Electrical Resistance in Blood-Brain Barrier Endothelial Cells.
    Waithe OY; Peng X; Childs EW; Tharakan B
    Methods Mol Biol; 2024; 2711():199-203. PubMed ID: 37776459
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Catecholaminergic Vasopressors Reduce Toll-Like Receptor Agonist-Induced Microvascular Endothelial Cell Permeability But Not Cytokine Production.
    Joffre J; Lloyd E; Wong E; Chung-Yeh C; Nguyen N; Xu F; Legrand M; Hellman J
    Crit Care Med; 2021 Mar; 49(3):e315-e326. PubMed ID: 33481407
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential transendothelial transport of adiponectin complexes.
    Rutkowski JM; Halberg N; Wang QA; Holland WL; Xia JY; Scherer PE
    Cardiovasc Diabetol; 2014 Feb; 13():47. PubMed ID: 24552349
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of DENV-Induced Endothelial Cell Permeability by Measurements of Transendothelial Electrical Resistance (TEER) and Extravasation of Proteins and Virus.
    Meuren LM; Coelho SVA; de Arruda LB
    Methods Mol Biol; 2022; 2409():207-222. PubMed ID: 34709644
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling and rescue of defective blood-brain barrier function of induced brain microvascular endothelial cells from childhood cerebral adrenoleukodystrophy patients.
    Lee CAA; Seo HS; Armien AG; Bates FS; Tolar J; Azarin SM
    Fluids Barriers CNS; 2018 Apr; 15(1):9. PubMed ID: 29615068
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Advanced glycation end-products disrupt brain microvascular endothelial cell barrier: The role of mitochondria and oxidative stress.
    Dobi A; Rosanaly S; Devin A; Baret P; Meilhac O; Harry GJ; d'Hellencourt CL; Rondeau P
    Microvasc Res; 2021 Jan; 133():104098. PubMed ID: 33075405
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prevention of VEGF-mediated microvascular permeability by C-peptide in diabetic mice.
    Lim YC; Bhatt MP; Kwon MH; Park D; Lee S; Choe J; Hwang J; Kim YM; Ha KS
    Cardiovasc Res; 2014 Jan; 101(1):155-64. PubMed ID: 24142430
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cerebral hypoxia/ischemia selectively disrupts tight junctions complexes in stem cell-derived human brain microvascular endothelial cells.
    Page S; Munsell A; Al-Ahmad AJ
    Fluids Barriers CNS; 2016 Oct; 13(1):16. PubMed ID: 27724968
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.