These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 33212230)
1. Use of 2-dimensional cell monolayers and 3-dimensional microvascular networks on microfluidic devices shows that iron increases transendothelial adiponectin flux via inducing ROS production. Yoon N; Kim S; Sung HK; Dang TQ; Jeon JS; Sweeney G Biochim Biophys Acta Gen Subj; 2021 Feb; 1865(2):129796. PubMed ID: 33212230 [TBL] [Abstract][Full Text] [Related]
2. Claudin-5 controls intercellular barriers of human dermal microvascular but not human umbilical vein endothelial cells. Kluger MS; Clark PR; Tellides G; Gerke V; Pober JS Arterioscler Thromb Vasc Biol; 2013 Mar; 33(3):489-500. PubMed ID: 23288152 [TBL] [Abstract][Full Text] [Related]
3. Transendothelial movement of adiponectin is restricted by glucocorticoids. Dang TQ; Yoon N; Chasiotis H; Dunford EC; Feng Q; He P; Riddell MC; Kelly SP; Sweeney G J Endocrinol; 2017 Aug; 234(2):101-114. PubMed ID: 28705835 [TBL] [Abstract][Full Text] [Related]
4. Functional brain-specific microvessels from iPSC-derived human brain microvascular endothelial cells: the role of matrix composition on monolayer formation. Katt ME; Linville RM; Mayo LN; Xu ZS; Searson PC Fluids Barriers CNS; 2018 Feb; 15(1):7. PubMed ID: 29463314 [TBL] [Abstract][Full Text] [Related]
5. Tracking adiponectin biodistribution via fluorescence molecular tomography indicates increased vascular permeability after streptozotocin-induced diabetes. Yoon N; Dadson K; Dang T; Chu T; Noskovicova N; Hinz B; Raignault A; Thorin E; Kim S; Jeon JS; Jonkman J; McKee TD; Grant J; Peterson JD; Kelly SP; Sweeney G Am J Physiol Endocrinol Metab; 2019 Nov; 317(5):E760-E772. PubMed ID: 31310580 [TBL] [Abstract][Full Text] [Related]
6. Endothelial permeability and IL-6 production during hypoxia: role of ROS in signal transduction. Ali MH; Schlidt SA; Chandel NS; Hynes KL; Schumacker PT; Gewertz BL Am J Physiol; 1999 Nov; 277(5):L1057-65. PubMed ID: 10564193 [TBL] [Abstract][Full Text] [Related]
7. Mucopolysaccharide polysulfate promotes microvascular stabilization and barrier integrity of dermal microvascular endothelial cells via activation of the angiopoietin-1/Tie2 pathway. Fujiwara-Sumiyoshi S; Ueda Y; Fujikawa M; Osaki M; Yamanaka N; Matsumoto T J Dermatol Sci; 2021 Jul; 103(1):25-32. PubMed ID: 34148739 [TBL] [Abstract][Full Text] [Related]
8. Comparison of organ-specific endothelial cells in terms of microvascular formation and endothelial barrier functions. Uwamori H; Ono Y; Yamashita T; Arai K; Sudo R Microvasc Res; 2019 Mar; 122():60-70. PubMed ID: 30472038 [TBL] [Abstract][Full Text] [Related]
9. Mdia1 is Crucial for Advanced Glycation End Product-Induced Endothelial Hyperpermeability. Zhou X; Weng J; Xu J; Xu Q; Wang W; Zhang W; Huang Q; Guo X Cell Physiol Biochem; 2018; 45(4):1717-1730. PubMed ID: 29490301 [TBL] [Abstract][Full Text] [Related]
10. Leveraging avidin-biotin interaction to quantify permeability property of microvessels-on-a-chip networks. Gao F; Sun H; Li X; He P Am J Physiol Heart Circ Physiol; 2022 Jan; 322(1):H71-H86. PubMed ID: 34767485 [TBL] [Abstract][Full Text] [Related]
11. Establishment of the deuterium oxide dilution method as a new possibility for determining the transendothelial water permeability. Müller H; Hahn J; Gierke A; Stark R; Brunner C; Hoffmann TK; Greve J; Wittekindt O; Lochbaum R Pflugers Arch; 2024 Jun; 476(6):993-1005. PubMed ID: 38438679 [TBL] [Abstract][Full Text] [Related]
12. Propofol inhibits burn injury-induced hyperpermeability through an apoptotic signal pathway in microvascular endothelial cells. Tian KY; Liu XJ; Xu JD; Deng LJ; Wang G Braz J Med Biol Res; 2015 May; 48(5):401-7. PubMed ID: 25760023 [TBL] [Abstract][Full Text] [Related]