These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Transport and Diffusion Enhancement in Experimentally Realized Non-Gaussian Correlated Ratchets. Paneru G; Park JT; Pak HK J Phys Chem Lett; 2021 Nov; 12(45):11078-11084. PubMed ID: 34748337 [TBL] [Abstract][Full Text] [Related]
4. Anomalous diffusion and nonergodicity for heterogeneous diffusion processes with fractional Gaussian noise. Wang W; Cherstvy AG; Liu X; Metzler R Phys Rev E; 2020 Jul; 102(1-1):012146. PubMed ID: 32794926 [TBL] [Abstract][Full Text] [Related]
5. Diffusing diffusivity: a model for anomalous, yet Brownian, diffusion. Chubynsky MV; Slater GW Phys Rev Lett; 2014 Aug; 113(9):098302. PubMed ID: 25216011 [TBL] [Abstract][Full Text] [Related]
6. Brownian yet non-Gaussian diffusion of a light particle in heavy gas: Lorentz-gas-based analysis. Nakai F; Uneyama T Phys Rev E; 2023 Oct; 108(4-1):044129. PubMed ID: 37978684 [TBL] [Abstract][Full Text] [Related]
7. Development of a semiclassical method to compute mobility and diffusion coefficient of a Brownian particle in a nonequilibrium environment. Shit A; Ghosh P; Chattopadhyay S; Chaudhuri JR Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Mar; 83(3 Pt 1):031125. PubMed ID: 21517472 [TBL] [Abstract][Full Text] [Related]
8. A Novel Physical Mechanism to Model Brownian Yet Non-Gaussian Diffusion: Theory and Application. Alban-Chacón FE; Lamilla-Rubio EA; Alvarez-Alvarado MS Materials (Basel); 2022 Aug; 15(17):. PubMed ID: 36079190 [TBL] [Abstract][Full Text] [Related]
9. Stochastic resetting and first arrival subjected to Gaussian noise and Poisson white noise. Goswami K; Chakrabarti R Phys Rev E; 2021 Sep; 104(3-1):034113. PubMed ID: 34654068 [TBL] [Abstract][Full Text] [Related]
10. Diffusion Coefficient of a Brownian Particle in Equilibrium and Nonequilibrium: Einstein Model and Beyond. Spiechowicz J; Marchenko IG; Hänggi P; Łuczka J Entropy (Basel); 2022 Dec; 25(1):. PubMed ID: 36673183 [TBL] [Abstract][Full Text] [Related]
11. Fractional Brownian motion with a reflecting wall. Wada AHO; Vojta T Phys Rev E; 2018 Feb; 97(2-1):020102. PubMed ID: 29548098 [TBL] [Abstract][Full Text] [Related]
12. Diffusion in a Crowded, Rearranging Environment. Jain R; Sebastian KL J Phys Chem B; 2016 Apr; 120(16):3988-92. PubMed ID: 27029607 [TBL] [Abstract][Full Text] [Related]
13. Anomalous yet Brownian. Wang B; Anthony SM; Bae SC; Granick S Proc Natl Acad Sci U S A; 2009 Sep; 106(36):15160-4. PubMed ID: 19666495 [TBL] [Abstract][Full Text] [Related]
14. Dynamics in crowded environments: is non-Gaussian Brownian diffusion normal? Kwon G; Sung BJ; Yethiraj A J Phys Chem B; 2014 Jul; 118(28):8128-34. PubMed ID: 24779432 [TBL] [Abstract][Full Text] [Related]
15. Scaled Brownian motion: a paradoxical process with a time dependent diffusivity for the description of anomalous diffusion. Jeon JH; Chechkin AV; Metzler R Phys Chem Chem Phys; 2014 Aug; 16(30):15811-7. PubMed ID: 24968336 [TBL] [Abstract][Full Text] [Related]
16. Diffusion of tagged particle in an exclusion process. Barkai E; Silbey R Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Apr; 81(4 Pt 1):041129. PubMed ID: 20481699 [TBL] [Abstract][Full Text] [Related]
17. Reaction-controlled diffusion: Monte Carlo simulations. Reid BA; Täuber UC; Brunson JC Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Oct; 68(4 Pt 2):046121. PubMed ID: 14683016 [TBL] [Abstract][Full Text] [Related]
18. Probability distribution of the time-averaged mean-square displacement of a Gaussian process. Grebenkov DS Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Sep; 84(3 Pt 1):031124. PubMed ID: 22060345 [TBL] [Abstract][Full Text] [Related]
19. Hitchhiker model for Laplace diffusion processes. Hidalgo-Soria M; Barkai E Phys Rev E; 2020 Jul; 102(1-1):012109. PubMed ID: 32794941 [TBL] [Abstract][Full Text] [Related]