These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 33212624)

  • 1. Unified approach to stochastic thermodynamics: Application to a quantum heat engine.
    Das J; Biswas LRR; Bag BC
    Phys Rev E; 2020 Oct; 102(4-1):042138. PubMed ID: 33212624
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantum mechanical bound for efficiency of quantum Otto heat engine.
    Park JM; Lee S; Chun HM; Noh JD
    Phys Rev E; 2019 Jul; 100(1-1):012148. PubMed ID: 31499873
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exact c-number representation of non-Markovian quantum dissipation.
    Stockburger JT; Grabert H
    Phys Rev Lett; 2002 Apr; 88(17):170407. PubMed ID: 12005739
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Achieving the classical Carnot efficiency in a strongly coupled quantum heat engine.
    Xu YY; Chen B; Liu J
    Phys Rev E; 2018 Feb; 97(2-1):022130. PubMed ID: 29548214
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Shannon entropic temperature and its lower and upper bounds for non-Markovian stochastic dynamics.
    Ray S; Bag BC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):032103. PubMed ID: 25314391
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantum heat engine power can be increased by noise-induced coherence.
    Scully MO; Chapin KR; Dorfman KE; Kim MB; Svidzinsky A
    Proc Natl Acad Sci U S A; 2011 Sep; 108(37):15097-100. PubMed ID: 21876187
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficiency at maximum power of a laser quantum heat engine enhanced by noise-induced coherence.
    Dorfman KE; Xu D; Cao J
    Phys Rev E; 2018 Apr; 97(4-1):042120. PubMed ID: 29758726
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Performance Analysis and Optimization for Irreversible Combined Carnot Heat Engine Working with Ideal Quantum Gases.
    Chen L; Meng Z; Ge Y; Wu F
    Entropy (Basel); 2021 Apr; 23(5):. PubMed ID: 33925622
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantum heat current under non-perturbative and non-Markovian conditions: Applications to heat machines.
    Kato A; Tanimura Y
    J Chem Phys; 2016 Dec; 145(22):224105. PubMed ID: 27984915
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantum engine efficiency bound beyond the second law of thermodynamics.
    Niedenzu W; Mukherjee V; Ghosh A; Kofman AG; Kurizki G
    Nat Commun; 2018 Jan; 9(1):165. PubMed ID: 29323109
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stochastic thermodynamics, fluctuation theorems and molecular machines.
    Seifert U
    Rep Prog Phys; 2012 Dec; 75(12):126001. PubMed ID: 23168354
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimal Power and Efficiency of Multi-Stage Endoreversible Quantum Carnot Heat Engine with Harmonic Oscillators at the Classical Limit.
    Meng Z; Chen L; Wu F
    Entropy (Basel); 2020 Apr; 22(4):. PubMed ID: 33286231
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Finite-power performance of quantum heat engines in linear response.
    Liu Q; He J; Ma Y; Wang J
    Phys Rev E; 2019 Jul; 100(1-1):012105. PubMed ID: 31499858
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficiency at maximum power output of linear irreversible Carnot-like heat engines.
    Wang Y; Tu ZC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 1):011127. PubMed ID: 22400532
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimal performance of generalized heat engines with finite-size baths of arbitrary multiple conserved quantities beyond independent-and-identical-distribution scaling.
    Ito K; Hayashi M
    Phys Rev E; 2018 Jan; 97(1-1):012129. PubMed ID: 29448373
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantum Photovoltaic Cells Driven by Photon Pulses.
    Oh S; Park JJ; Nha H
    Entropy (Basel); 2020 Jun; 22(6):. PubMed ID: 33286465
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Geometric phaselike effects in a quantum heat engine.
    Giri SK; Goswami HP
    Phys Rev E; 2017 Nov; 96(5-1):052129. PubMed ID: 29347686
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Strong Coupling Corrections in Quantum Thermodynamics.
    Perarnau-Llobet M; Wilming H; Riera A; Gallego R; Eisert J
    Phys Rev Lett; 2018 Mar; 120(12):120602. PubMed ID: 29694098
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single-particle stochastic heat engine.
    Rana S; Pal PS; Saha A; Jayannavar AM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):042146. PubMed ID: 25375477
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Non-Markovian thermal operations boosting the performance of quantum heat engines.
    Ptaszyński K
    Phys Rev E; 2022 Jul; 106(1-1):014114. PubMed ID: 35974499
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.