These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 33212673)
1. General hierarchical structure to solve transport phenomena with dissimilar time scales: Application in large-scale three-dimensional thermosolutal phase-field problems. Zhang A; Du J; Yang J; Guo Z; Wang Q; Jiang B; Pan F; Xiong S Phys Rev E; 2020 Oct; 102(4-1):043313. PubMed ID: 33212673 [TBL] [Abstract][Full Text] [Related]
2. Prediction of the operating point of dendrites growing under coupled thermosolutal control at high growth velocity. Mullis AM Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jun; 83(6 Pt 1):061601. PubMed ID: 21797374 [TBL] [Abstract][Full Text] [Related]
3. A Parallel Cellular Automata Lattice Boltzmann Method for Convection-Driven Solidification. Kao A; Krastins I; Alexandrakis M; Shevchenko N; Eckert S; Pericleous K JOM (1989); 2019; 71(1):48-58. PubMed ID: 30880880 [TBL] [Abstract][Full Text] [Related]
4. Phase-field modeling of binary alloy solidification with coupled heat and solute diffusion. Ramirez JC; Beckermann C; Karma A; Diepers HJ Phys Rev E Stat Nonlin Soft Matter Phys; 2004 May; 69(5 Pt 1):051607. PubMed ID: 15244829 [TBL] [Abstract][Full Text] [Related]
5. Simulation of macrosegregation in a 2.45-ton steel ingot using a three-phase mixed columnar-equiaxed model. Li J; Wu M; Ludwig A; Kharicha A Int J Heat Mass Transf; 2014 May; 72(100):668-679. PubMed ID: 24795485 [TBL] [Abstract][Full Text] [Related]
6. Modeling of coupled motion and growth interaction of equiaxed dendritic crystals in a binary alloy during solidification. Qi XB; Chen Y; Kang XH; Li DZ; Gong TZ Sci Rep; 2017 Mar; 7():45770. PubMed ID: 28361933 [TBL] [Abstract][Full Text] [Related]
7. Three-dimensional lattice Boltzmann flux solver for simulation of fluid-solid conjugate heat transfer problems with curved boundary. Yang LM; Shu C; Chen Z; Wu J Phys Rev E; 2020 May; 101(5-1):053309. PubMed ID: 32575276 [TBL] [Abstract][Full Text] [Related]
8. Phase-field-based lattice Boltzmann finite-difference model for simulating thermocapillary flows. Liu H; Valocchi AJ; Zhang Y; Kang Q Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):013010. PubMed ID: 23410429 [TBL] [Abstract][Full Text] [Related]
9. Numerical simulation of the effect of hypergravity on the dendritic growth characteristics of aluminum alloys. Zhang Y; Dou R; Wang J; Liu X; Wen Z Heliyon; 2024 Mar; 10(5):e27008. PubMed ID: 38463893 [TBL] [Abstract][Full Text] [Related]
10. Phase-field simulation of microstructure evolution in electron beam additive manufacturing. Chu S; Guo C; Zhang T; Wang Y; Li J; Wang Z; Wang J; Qian Y; Zhao H Eur Phys J E Soft Matter; 2020 Jun; 43(6):35. PubMed ID: 32524314 [TBL] [Abstract][Full Text] [Related]
11. Interaction of local solidification and remelting during dendrite coarsening - modeling and comparison with experiments. Zhang Q; Fang H; Xue H; Pan S; Rettenmayr M; Zhu M Sci Rep; 2017 Dec; 7(1):17809. PubMed ID: 29259208 [TBL] [Abstract][Full Text] [Related]
12. Near-isothermal furnace for in situ and real time X-ray radiography solidification experiments. Becker M; Dreißigacker C; Klein S; Kargl F Rev Sci Instrum; 2015 Jun; 86(6):063904. PubMed ID: 26133847 [TBL] [Abstract][Full Text] [Related]
13. Coupling lattice Boltzmann model for simulation of thermal flows on standard lattices. Li Q; Luo KH; He YL; Gao YJ; Tao WQ Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 2):016710. PubMed ID: 22400704 [TBL] [Abstract][Full Text] [Related]
14. Phase-field study of the effects of the multi-controlling parameters on columnar dendrite during directional solidification in hexagonal materials. Wang Y; Wei M; Liu X; Chen C; Wu Y; Peng L; Chen LQ Eur Phys J E Soft Matter; 2020 Jul; 43(7):41. PubMed ID: 32617715 [TBL] [Abstract][Full Text] [Related]
15. Phase-field simulations of velocity selection in rapidly solidified binary alloys. Fan J; Greenwood M; Haataja M; Provatas N Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Sep; 74(3 Pt 1):031602. PubMed ID: 17025638 [TBL] [Abstract][Full Text] [Related]
16. Lattice Boltzmann scheme for crystal growth in external flows. Medvedev D; Kassner K Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Nov; 72(5 Pt 2):056703. PubMed ID: 16383781 [TBL] [Abstract][Full Text] [Related]
17. Meshless lattice Boltzmann method for the simulation of fluid flows. Musavi SH; Ashrafizaadeh M Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):023310. PubMed ID: 25768638 [TBL] [Abstract][Full Text] [Related]
18. Generalized lattice Boltzmann model for frosting. Lei T; Luo KH; Wu D Phys Rev E; 2019 May; 99(5-1):053301. PubMed ID: 31212499 [TBL] [Abstract][Full Text] [Related]
19. Consistent lattice Boltzmann modeling of low-speed isothermal flows at finite Knudsen numbers in slip-flow regime. II. Application to curved boundaries. Silva G Phys Rev E; 2018 Aug; 98(2-1):023302. PubMed ID: 30253480 [TBL] [Abstract][Full Text] [Related]
20. Phase-field simulation of peritectic solidification closely coupled with directional solidification experiments in an Al-36 wt% Ni alloy. Siquieri R; Doernberg E; Emmerich H; Schmid-Fetzer R J Phys Condens Matter; 2009 Nov; 21(46):464112. PubMed ID: 21715876 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]