These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 33212673)
61. Three-dimensional cellular automaton simulation of coupled hydrogen porosity and microstructure during solidification of ternary aluminum alloys. Gu C; Lu Y; Ridgeway CD; Cinkilic E; Luo AA Sci Rep; 2019 Sep; 9(1):13099. PubMed ID: 31511579 [TBL] [Abstract][Full Text] [Related]
62. Lattice Boltzmann method coupled with the Oldroyd-B constitutive model for a viscoelastic fluid. Su J; Ouyang J; Wang X; Yang B Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Nov; 88(5):053304. PubMed ID: 24329376 [TBL] [Abstract][Full Text] [Related]
63. Experimental and modelling studies for solidification of undercooled Ni-Fe-Si alloys. Mohan D; Phanikumar G Philos Trans A Math Phys Eng Sci; 2019 Apr; 377(2143):20180208. PubMed ID: 30827212 [TBL] [Abstract][Full Text] [Related]
64. Numerical investigation of buoyancy balance effect on thermosolutal convection in a horizontal annular porous cavity. Ja A; Cheddadi A Eur Phys J E Soft Matter; 2019 Jan; 42(1):9. PubMed ID: 30671647 [TBL] [Abstract][Full Text] [Related]
65. Entropic lattice Boltzmann model for Burgers's equation. Boghosian BM; Love P; Yepez J Philos Trans A Math Phys Eng Sci; 2004 Aug; 362(1821):1691-701. PubMed ID: 15306440 [TBL] [Abstract][Full Text] [Related]
66. Effect of Temperature Gradient on the Grain Size Homogeneity of SEED Produced Semi-Solid Slurries by Phase-Field Simulation. Qu W; Luo M; Guo Z; Hu X; Zhang A; Zhang F; Li D; Zhang Y Materials (Basel); 2019 Oct; 12(20):. PubMed ID: 31614518 [TBL] [Abstract][Full Text] [Related]
68. Phase separation in thermal systems: a lattice Boltzmann study and morphological characterization. Gan Y; Xu A; Zhang G; Li Y; Li H Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Oct; 84(4 Pt 2):046715. PubMed ID: 22181315 [TBL] [Abstract][Full Text] [Related]
69. Regularized lattice Boltzmann model for immiscible two-phase flows with power-law rheology. Ba Y; Wang N; Liu H; Li Q; He G Phys Rev E; 2018 Mar; 97(3-1):033307. PubMed ID: 29776031 [TBL] [Abstract][Full Text] [Related]
70. Alternative modeling methods for plasma-based Rf ion sources. Veitzer SA; Kundrapu M; Stoltz PH; Beckwith KR Rev Sci Instrum; 2016 Feb; 87(2):02B142. PubMed ID: 26932024 [TBL] [Abstract][Full Text] [Related]
71. Multiple-relaxation-time lattice Boltzmann model for incompressible miscible flow with large viscosity ratio and high Péclet number. Meng X; Guo Z Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Oct; 92(4):043305. PubMed ID: 26565362 [TBL] [Abstract][Full Text] [Related]
72. Microstructural and Mechanical-Property Manipulation through Rapid Dendrite Growth and Undercooling in an Fe-based Multinary Alloy. Ruan Y; Mohajerani A; Dao M Sci Rep; 2016 Aug; 6():31684. PubMed ID: 27539749 [TBL] [Abstract][Full Text] [Related]
74. Consistent lattice Boltzmann modeling of low-speed isothermal flows at finite Knudsen numbers in slip-flow regime: Application to plane boundaries. Silva G; Semiao V Phys Rev E; 2017 Jul; 96(1-1):013311. PubMed ID: 29347253 [TBL] [Abstract][Full Text] [Related]
75. Chebyshev collocation spectral lattice Boltzmann method for simulation of low-speed flows. Hejranfar K; Hajihassanpour M Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jan; 91(1):013301. PubMed ID: 25679733 [TBL] [Abstract][Full Text] [Related]
76. Lattice Boltzmann modeling and simulation of liquid jet breakup. Saito S; Abe Y; Koyama K Phys Rev E; 2017 Jul; 96(1-1):013317. PubMed ID: 29347180 [TBL] [Abstract][Full Text] [Related]
77. Lattice-Boltzmann simulations of three-dimensional fluid flow on a desktop computer. Brewster JD Anal Chem; 2007 Apr; 79(7):2965-71. PubMed ID: 17319648 [TBL] [Abstract][Full Text] [Related]
78. On the lattice Boltzmann method simulation of a two-phase flow bioreactor for artificially grown cartilage cells. Hussein MA; Esterl S; Pörtner R; Wiegandt K; Becker T J Biomech; 2008 Dec; 41(16):3455-61. PubMed ID: 19019373 [TBL] [Abstract][Full Text] [Related]
79. An alternative method to implement contact angle boundary condition and its application in hybrid lattice-Boltzmann finite-difference simulations of two-phase flows with immersed surfaces. Huang JJ; Wu J; Huang H Eur Phys J E Soft Matter; 2018 Feb; 41(2):17. PubMed ID: 29404782 [TBL] [Abstract][Full Text] [Related]
80. Modified cellular automaton model for the prediction of dendritic growth with melt convection. Zhu MF; Lee SY; Hong CP Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jun; 69(6 Pt 1):061610. PubMed ID: 15244588 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]