These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Impact of commercial precooking of common bean (Phaseolus vulgaris) on the generation of peptides, after pepsin-pancreatin hydrolysis, capable to inhibit dipeptidyl peptidase-IV. Mojica L; Chen K; de Mejía EG J Food Sci; 2015 Jan; 80(1):H188-98. PubMed ID: 25495131 [TBL] [Abstract][Full Text] [Related]
5. Antioxidant properties, ACE/renin inhibitory activities of pigeon pea hydrolysates and effects on systolic blood pressure of spontaneously hypertensive rats. Olagunju AI; Omoba OS; Enujiugha VN; Alashi AM; Aluko RE Food Sci Nutr; 2018 Oct; 6(7):1879-1889. PubMed ID: 30349677 [TBL] [Abstract][Full Text] [Related]
6. Co-sensitization between legumes is frequently seen, but variable and not always clinically relevant. Smits M; Verhoeckx K; Knulst A; Welsing P; de Jong A; Gaspari M; Ehlers A; Verhoeff P; Houben G; Le TM Front Allergy; 2023; 4():1115022. PubMed ID: 37007648 [TBL] [Abstract][Full Text] [Related]
7. Development of lentil peptides with potent antioxidant, antihypertensive, and antidiabetic activities along with umami taste. Rezvankhah A; Yarmand MS; Ghanbarzadeh B; Mirzaee H Food Sci Nutr; 2023 Jun; 11(6):2974-2989. PubMed ID: 37324857 [TBL] [Abstract][Full Text] [Related]
8. Common bean (Phaseolus vulgaris L.) hydrolysates inhibit inflammation in LPS-induced macrophages through suppression of NF-κB pathways. Oseguera-Toledo ME; de Mejia EG; Dia VP; Amaya-Llano SL Food Chem; 2011 Aug; 127(3):1175-85. PubMed ID: 25214111 [TBL] [Abstract][Full Text] [Related]
9. Effectiveness of enzymatic hydrolysis for reducing the allergenic potential of legume by-products. Calcinai L; Bonomini MG; Leni G; Faccini A; Puxeddu I; Giannini D; Petrelli F; Prandi B; Sforza S; Tedeschi T Sci Rep; 2022 Oct; 12(1):16902. PubMed ID: 36207409 [TBL] [Abstract][Full Text] [Related]
10. Antioxidant Potential of Mung Bean ( Kusumah J; Real Hernandez LM; Gonzalez de Mejia E Foods; 2020 Sep; 9(9):. PubMed ID: 32899856 [TBL] [Abstract][Full Text] [Related]
11. A comparative study on phenolic profiles and antioxidant activities of legumes as affected by extraction solvents. Xu BJ; Chang SK J Food Sci; 2007 Mar; 72(2):S159-66. PubMed ID: 17995858 [TBL] [Abstract][Full Text] [Related]
12. Mapping B-Cell Epitopes for Nonspecific Lipid Transfer Proteins of Legumes Consumed in India and Identification of Critical Residues Responsible for IgE Binding. Mishra A; Kumar A Foods; 2021 Jun; 10(6):. PubMed ID: 34199581 [TBL] [Abstract][Full Text] [Related]
13. Anti-allergic activity of mung bean (Vigna radiata (L.) Wilczek) protein hydrolysates produced by enzymatic hydrolysis using non-gastrointestinal and gastrointestinal enzymes. Budseekoad S; Takahashi Yupanqui C; Alashi AM; Aluko RE; Youravong W J Food Biochem; 2019 Jan; 43(1):e12674. PubMed ID: 31353487 [TBL] [Abstract][Full Text] [Related]
14. ACE-inhibitory activity of enzymatic protein hydrolysates from lupin and other legumes. Boschin G; Scigliuolo GM; Resta D; Arnoldi A Food Chem; 2014 Feb; 145():34-40. PubMed ID: 24128446 [TBL] [Abstract][Full Text] [Related]
15. Black bean (Phaseolus vulgaris L.) protein hydrolysates: Physicochemical and functional properties. Evangelho JAD; Vanier NL; Pinto VZ; Berrios JJ; Dias ARG; Zavareze EDR Food Chem; 2017 Jan; 214():460-467. PubMed ID: 27507499 [TBL] [Abstract][Full Text] [Related]
16. Impact of germination and enzymatic hydrolysis of cowpea bean (Vigna unguiculata) on the generation of peptides capable of inhibiting dipeptidyl peptidase IV. de Souza Rocha T; Hernandez LMR; Chang YK; de Mejía EG Food Res Int; 2014 Oct; 64():799-809. PubMed ID: 30011718 [TBL] [Abstract][Full Text] [Related]
17. Effects of processing technologies on the antioxidant properties of common bean (Phaseolus vulgaris L.) and lentil (Lens culinaris) proteins and their hydrolysates. Lopes C; Akel Ferruccio C; de Albuquerque Sales AC; Tavares GM; de Castro RJS Food Res Int; 2023 Oct; 172():113190. PubMed ID: 37689943 [TBL] [Abstract][Full Text] [Related]
18. Comparative study on antioxidant activity of different varieties of commonly consumed legumes in India. Marathe SA; Rajalakshmi V; Jamdar SN; Sharma A Food Chem Toxicol; 2011 Sep; 49(9):2005-12. PubMed ID: 21601612 [TBL] [Abstract][Full Text] [Related]
19. Health Benefits of Antioxidative Peptides Derived from Legume Proteins with a High Amino Acid Score. Matemu A; Nakamura S; Katayama S Antioxidants (Basel); 2021 Feb; 10(2):. PubMed ID: 33672537 [TBL] [Abstract][Full Text] [Related]
20. Ranking of 10 legumes according to the prevalence of sensitization as a parameter to characterize allergenic proteins. Smits M; Verhoeckx K; Knulst A; Welsing P; de Jong A; Houben G; Le TM Toxicol Rep; 2021; 8():767-773. PubMed ID: 33854954 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]