These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 33213005)

  • 41. Efficient conversion of acetate into lipids by the oleaginous yeast Cryptococcus curvatus.
    Gong Z; Shen H; Zhou W; Wang Y; Yang X; Zhao ZK
    Biotechnol Biofuels; 2015; 8():189. PubMed ID: 26609324
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Production of short-chain fatty acids (SCFAs) as chemicals or substrates for microbes to obtain biochemicals.
    Tomás-Pejó E; González-Fernández C; Greses S; Kennes C; Otero-Logilde N; Veiga MC; Bolzonella D; Müller B; Passoth V
    Biotechnol Biofuels Bioprod; 2023 Jun; 16(1):96. PubMed ID: 37270640
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A Deuteromycete Isolate Geotrichum candidum as Oleaginous Cell Factory for Medium-Chain Fatty Acid-Rich Oils.
    Diwan B; Gupta P
    Curr Microbiol; 2020 Nov; 77(11):3738-3749. PubMed ID: 32778944
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Achieving a high-density oleaginous yeast culture: Comparison of four processing strategies using Metschnikowia pulcherrima.
    Abeln F; Chuck CJ
    Biotechnol Bioeng; 2019 Dec; 116(12):3200-3214. PubMed ID: 31429929
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Lipid Production from Native Oleaginous Yeasts Isolated from Southern Chilean Soil Cultivated in Industrial Vinasse Residues.
    Díaz-Navarrete P; Marileo L; Madrid H; Belezaca-Pinargote C; Dantagnan P
    Microorganisms; 2023 Oct; 11(10):. PubMed ID: 37894174
    [TBL] [Abstract][Full Text] [Related]  

  • 46. From agro-industrial wastes to single cell oils: a step towards prospective biorefinery.
    Diwan B; Parkhey P; Gupta P
    Folia Microbiol (Praha); 2018 Sep; 63(5):547-568. PubMed ID: 29687420
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Lipids from heterotrophic microbes: advances in metabolism research.
    Kosa M; Ragauskas AJ
    Trends Biotechnol; 2011 Feb; 29(2):53-61. PubMed ID: 21146236
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Lipid accumulation potential of oleaginous yeasts: A comparative evaluation using food waste leachate as a substrate.
    Johnravindar D; Karthikeyan OP; Selvam A; Murugesan K; Wong JWC
    Bioresour Technol; 2018 Jan; 248(Pt A):221-228. PubMed ID: 28736146
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Oleaginous yeasts for biodiesel: current and future trends in biology and production.
    Sitepu IR; Garay LA; Sestric R; Levin D; Block DE; German JB; Boundy-Mills KL
    Biotechnol Adv; 2014 Nov; 32(7):1336-1360. PubMed ID: 25172033
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Mastering targeted genome engineering of GC-rich oleaginous yeast for tailored plant oil alternatives for the food and chemical sector.
    Shaigani P; Fuchs T; Graban P; Prem S; Haack M; Masri M; Mehlmer N; Brueck T
    Microb Cell Fact; 2023 Feb; 22(1):25. PubMed ID: 36755261
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Volatile fatty acids, metabolic by-products of periodontopathic bacteria, inhibit lymphocyte proliferation and cytokine production.
    Kurita-Ochiai T; Fukushima K; Ochiai K
    J Dent Res; 1995 Jul; 74(7):1367-73. PubMed ID: 7560387
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Properties of Oils From Plantain Pseudostem Biotransformed Using Crude Local Enzyme Sources: A Comparison of Poultry Feed Oil.
    Uchenna AP; Charity OU; Bene A
    Recent Pat Food Nutr Agric; 2019; 10(2):140-151. PubMed ID: 30556509
    [TBL] [Abstract][Full Text] [Related]  

  • 53. γ-Alumina as a process advancing tool for a new generation biofuel.
    Syngiridis K; Bekatorou A; Kallis M; Kandylis P; Kanellaki M; Koutinas AA
    Bioresour Technol; 2013 Mar; 132():45-8. PubMed ID: 23399494
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Assessing an effective feeding strategy to optimize crude glycerol utilization as sustainable carbon source for lipid accumulation in oleaginous yeasts.
    Signori L; Ami D; Posteri R; Giuzzi A; Mereghetti P; Porro D; Branduardi P
    Microb Cell Fact; 2016 May; 15():75. PubMed ID: 27149859
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Direct transesterification of fatty acids produced by Fusarium solani for biodiesel production: effect of carbon and nitrogen on lipid accumulation in the fungal biomass.
    Rasmey AM; Tawfik MA; Abdel-Kareem MM
    J Appl Microbiol; 2020 Apr; 128(4):1074-1085. PubMed ID: 31802586
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Characterization of oleaginous yeasts accumulating high levels of lipid when cultivated in glycerol and their potential for lipid production from biodiesel-derived crude glycerol.
    Polburee P; Yongmanitchai W; Lertwattanasakul N; Ohashi T; Fujiyama K; Limtong S
    Fungal Biol; 2015 Dec; 119(12):1194-1204. PubMed ID: 26615742
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Comparative lipid production by oleaginous yeasts in hydrolyzates of lignocellulosic biomass and process strategy for high titers.
    Slininger PJ; Dien BS; Kurtzman CP; Moser BR; Bakota EL; Thompson SR; O'Bryan PJ; Cotta MA; Balan V; Jin M; Sousa Lda C; Dale BE
    Biotechnol Bioeng; 2016 Aug; 113(8):1676-90. PubMed ID: 26724417
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effect of inoculum size on single-cell oil production from glucose and xylose using oleaginous yeast Lipomyces starkeyi.
    Juanssilfero AB; Kahar P; Amza RL; Miyamoto N; Otsuka H; Matsumoto H; Kihira C; Thontowi A; Yopi ; Ogino C; Prasetya B; Kondo A
    J Biosci Bioeng; 2018 Jun; 125(6):695-702. PubMed ID: 29373308
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Fatty acids from oleaginous yeasts and yeast-like fungi and their potential applications.
    Xue SJ; Chi Z; Zhang Y; Li YF; Liu GL; Jiang H; Hu Z; Chi ZM
    Crit Rev Biotechnol; 2018 Nov; 38(7):1049-1060. PubMed ID: 29385857
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Removal and recovery of inhibitory volatile fatty acids from mixed acid fermentations by conventional electrodialysis.
    Jones RJ; Massanet-Nicolau J; Guwy A; Premier GC; Dinsdale RM; Reilly M
    Bioresour Technol; 2015 Aug; 189():279-284. PubMed ID: 25898090
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.