These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Thermal Conductivity and Electrical Resistivity of Melt-Mixed Polypropylene Composites Containing Mixtures of Carbon-Based Fillers. Krause B; Rzeczkowski P; Pötschke P Polymers (Basel); 2019 Jun; 11(6):. PubMed ID: 31234343 [TBL] [Abstract][Full Text] [Related]
5. Electrical conductivities of composites with aligned carbon nanotubes. Li C; Chou TW J Nanosci Nanotechnol; 2009 Apr; 9(4):2518-24. PubMed ID: 19437996 [TBL] [Abstract][Full Text] [Related]
6. The Electrical Properties of Hybrid Composites Based on Multiwall Carbon Nanotubes with Graphite Nanoplatelets. Perets Y; Aleksandrovych L; Melnychenko M; Lazarenko O; Vovchenko L; Matzui L Nanoscale Res Lett; 2017 Dec; 12(1):406. PubMed ID: 28618717 [TBL] [Abstract][Full Text] [Related]
7. Synthesis of bamboo-shaped carbon-nitrogen nanotubes using acetonitrile-ferrocene precursor. Yadav RM; Srivastava A; Srivastava ON J Nanosci Nanotechnol; 2004 Sep; 4(7):719-21. PubMed ID: 15570951 [TBL] [Abstract][Full Text] [Related]
8. Carbon nanotube-like materials in the exhaust from a diesel engine using gas oil/ethanol mixing fuel with catalysts and sulfur. Suzuki S; Mori S J Air Waste Manag Assoc; 2017 Aug; 67(8):873-880. PubMed ID: 28278030 [TBL] [Abstract][Full Text] [Related]
9. Effects of functionalization on thermal properties of single-wall and multi-wall carbon nanotube-polymer nanocomposites. Gulotty R; Castellino M; Jagdale P; Tagliaferro A; Balandin AA ACS Nano; 2013 Jun; 7(6):5114-21. PubMed ID: 23672711 [TBL] [Abstract][Full Text] [Related]
10. Investigation on Temperature-Dependent Electrical Conductivity of Carbon Nanotube/Epoxy Composites for Sustainable Energy Applications. Njuguna MK; Galpaya D; Yan C; Colwell JM; Will G; Hu N; Yarlagadda P; Bell JM J Nanosci Nanotechnol; 2015 Sep; 15(9):6957-64. PubMed ID: 26716268 [TBL] [Abstract][Full Text] [Related]
11. Synthesis, characterisation and applications of coiled carbon nanotubes. Hanus MJ; Harris AT J Nanosci Nanotechnol; 2010 Apr; 10(4):2261-83. PubMed ID: 20355423 [TBL] [Abstract][Full Text] [Related]
12. Synthesis of carbon nanotubes with and without catalyst particles. Rümmeli MH; Bachmatiuk A; Börrnert F; Schäffel F; Ibrahim I; Cendrowski K; Simha-Martynkova G; Plachá D; Borowiak-Palen E; Cuniberti G; Büchner B Nanoscale Res Lett; 2011 Apr; 6(1):303. PubMed ID: 21711812 [TBL] [Abstract][Full Text] [Related]
13. CVD growth of N-doped carbon nanotubes on silicon substrates and its mechanism. He M; Zhou S; Zhang J; Liu Z; Robinson C J Phys Chem B; 2005 May; 109(19):9275-9. PubMed ID: 16852108 [TBL] [Abstract][Full Text] [Related]
14. Structure of Supported and Unsupported Catalytic Rh Nanoparticles: Effects on Nucleation of Single-Walled Carbon Nanotubes. Gomez-Ballesteros JL; Balbuena PB Langmuir; 2017 Oct; 33(42):11109-11119. PubMed ID: 28709379 [TBL] [Abstract][Full Text] [Related]
15. Formation of carbon nanotubes without iron inclusion and their alignment through ferrocene and ferrocene-ethylene pyrolysis. Awasthi K; Singh AK; Srivastava ON J Nanosci Nanotechnol; 2003 Dec; 3(6):540-4. PubMed ID: 15002137 [TBL] [Abstract][Full Text] [Related]
16. Microwave-synthesized freestanding iron-carbon nanotubes on polyester composites of woven Kevlar fibre and silver nanoparticle-decorated graphene. Hazarika A; Deka BK; Kim D; Kong K; Park YB; Park HW Sci Rep; 2017 Jan; 7():40386. PubMed ID: 28074877 [TBL] [Abstract][Full Text] [Related]
17. Improvement of the electrical conductivity of carbon fibers through the growth of carbon nanofibers. Moon CW; Meng LY; Im SS; Rhee KY; Park SJ J Nanosci Nanotechnol; 2011 Jul; 11(7):6193-7. PubMed ID: 22121683 [TBL] [Abstract][Full Text] [Related]