These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 33213627)

  • 1. Micro-Nanoscale Characteristics of Pyrite and Its Implications for Gold Mineralization: Two Cases of Gold Deposits in the Youjiang Basin and Southwestern Tianshan Mountains.
    Feng H; Ju Y; Chen B; Fang W; Zhu H; Li W; Ju L; Qiao P
    J Nanosci Nanotechnol; 2021 Jan; 21(1):246-261. PubMed ID: 33213627
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Geochemical Evidence of Ore-Forming Processes in the Shuiyindong Gold Deposit of Southwest Guizhou Province, China.
    Kang H; Liu Y; Hu K; Han S
    ACS Omega; 2024 Sep; 9(38):39365-39386. PubMed ID: 39346842
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanisms for Pd-Au enrichment in porphyry-epithermal ores of the Elatsite deposit, Bulgaria.
    González-Jiménez JM; Piña R; Kerestedjian TN; Gervilla F; Borrajo I; Pablo JF; Proenza JA; Tornos F; Roqué J; Nieto F
    J Geochem Explor; 2021 Jan; 220():106664. PubMed ID: 33041466
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extreme shifts in pyrite sulfur isotope compositions reveal the path to bonanza gold.
    McLeish DF; Williams-Jones AE; Clark JR; Stern RA
    Proc Natl Acad Sci U S A; 2024 May; 121(21):e2402116121. PubMed ID: 38739803
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formation of a magmatic-hydrothermal ore deposit: insights with LA-ICP-MS analysis of fluid inclusions.
    Audetat A; Gunther D; Heinrich CA
    Science; 1998 Mar; 279(5359):2091-4. PubMed ID: 9516106
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [The enrichment characteristic and mechanism of gold-silver minerals in submarine hydrothermal sulfides from the ultra-slow-spreading SWIR].
    Wang Y; Sun XM; Wu ZW; Deng XG; Dai YZ; Lin ZY
    Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Dec; 34(12):3327-32. PubMed ID: 25881433
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Magmatic-hydrothermal fluid evolution of the tin-polymetallic metallogenic systems from the Weilasituo ore district, Northeast China.
    Gao X; Zhou Z; Breiter K; Mao J; Romer RL; Cook NJ; Holtz F
    Sci Rep; 2024 Feb; 14(1):3006. PubMed ID: 38321094
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The origin of Cu/Au ratios in porphyry-type ore deposits.
    Halter WE; Pettke T; Heinrich CA
    Science; 2002 Jun; 296(5574):1844-6. PubMed ID: 12052953
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The
    Shi K; Wang K; Yu H; Wang Z; Ma X; Bai X; Wang R
    Sci Rep; 2018 Sep; 8(1):13879. PubMed ID: 30224781
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genesis of the hydrothermal gold system in the kibaran metallogenic province (D.R.Congo): A review for the Twangiza-Namoya gold belt.
    Heritier RN; Li H; Ibrahim MAE; Nambaje C; Luemba M
    Heliyon; 2024 Jun; 10(12):e33222. PubMed ID: 39022093
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The geochemistry, origin, and hydrothermal alteration mapping associated with the gold-bearing quartz veins at Hamash district, South Eastern Desert, Egypt.
    Abdel-Rahman AM; El-Desoky HM; Shebl A; El-Awny H; Amer YZ; Csámer Á
    Sci Rep; 2023 Sep; 13(1):15058. PubMed ID: 37700069
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mineralogical and geochemical characterization of mining wastes: remining potential and environmental implications, Muteh Gold Deposit, Iran.
    Modabberi S
    Environ Monit Assess; 2018 Nov; 190(12):734. PubMed ID: 30456549
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Copper sulfide deposition and remobilisation triggered by non-magmatic fluid incursion in the single-intrusion Tongchang porphyry system, SE China.
    Liu X; Richard A; Pironon J; Yang K
    Sci Rep; 2024 Jan; 14(1):2576. PubMed ID: 38297039
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Periodic bioleaching of refractory gold-bearing pyrite ore].
    Vardanian NS; Nagdalian SZ
    Prikl Biokhim Mikrobiol; 2009; 45(4):446-51. PubMed ID: 19764614
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gold in magmatic hydrothermal solutions and the rapid formation of a giant ore deposit.
    Simmons SF; Brown KL
    Science; 2006 Oct; 314(5797):288-91. PubMed ID: 17038619
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Garnet secondary ion mass spectrometry oxygen isotopes reveal crucial roles of pulsed magmatic fluid and its mixing with meteoric water in lode gold genesis.
    Fan GH; Li JW; Valley JW; Scicchitano MR; Brown PE; Yang JH; Robinson PT; Deng XD; Wu YF; Li ZK; Gao WS; Li SY; Zhao SR
    Proc Natl Acad Sci U S A; 2022 May; 119(19):e2116380119. PubMed ID: 35500124
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nano-Micron Exsolved Spinels in Titanomagnetite and Their Implications for the Formation of the Panzhihua Fe-Ti-V Oxide Deposit, Southwest China.
    Zhang Z; Huang F; Li Y; Liu K; Zhao F
    J Nanosci Nanotechnol; 2021 Jan; 21(1):326-342. PubMed ID: 33213633
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coupled partitioning of Au and As into pyrite controls formation of giant Au deposits.
    Kusebauch C; Gleeson SA; Oelze M
    Sci Adv; 2019 May; 5(5):eaav5891. PubMed ID: 31049396
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemical Forms of Mercury in Pyrite: Implications for Predicting Mercury Releases in Acid Mine Drainage Settings.
    Manceau A; Merkulova M; Murdzek M; Batanova V; Baran R; Glatzel P; Saikia BK; Paktunc D; Lefticariu L
    Environ Sci Technol; 2018 Sep; 52(18):10286-10296. PubMed ID: 30169032
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Progressive crushing
    Hu R; Pang B; Bai X; Brouwer FM; Bai L; Liu X; Li Y; Xu J; Qiu H
    Sci Rep; 2022 Jul; 12(1):12793. PubMed ID: 35896685
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.