These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
321 related articles for article (PubMed ID: 33213650)
1. Characterization of Pore Structure and Its Relationship with Methane Adsorption on Medium-High Volatile Bituminous Coal: An Experimental Study Using Nuclear Magnetic Resonance. Zhang B; Fu X; Deng Z; Hao M J Nanosci Nanotechnol; 2021 Jan; 21(1):515-528. PubMed ID: 33213650 [TBL] [Abstract][Full Text] [Related]
2. Mineral Characteristics of Low-Rank Coal and the Effects on the Micro- and Nanoscale Pore-Fractures: A Case Study from the Zhundong Coalfield, Northwest China. Zhou S; Liu D; Cai Y; Wang Y; Yan D J Nanosci Nanotechnol; 2021 Jan; 21(1):460-471. PubMed ID: 33213645 [TBL] [Abstract][Full Text] [Related]
3. Selection Effect of Liquid Nitrogen Freeze-Thaw Cycles on Full Pore Size Distribution of Different Rank Coals. Li Y; Ren Z; Song D; Liu W; Wang H; Guo X ACS Omega; 2023 Mar; 8(10):9526-9538. PubMed ID: 36936307 [TBL] [Abstract][Full Text] [Related]
4. Dynamic Evolution of Nanoscale Pores of Different Rank Coals Under Solvent Extraction. Zhang X; Zhang S; Li X; Heng S J Nanosci Nanotechnol; 2021 Jan; 21(1):450-459. PubMed ID: 33213644 [TBL] [Abstract][Full Text] [Related]
5. Nanopore Structure of Different Rank Coals and Its Quantitative Characterization. Li X; Li Z; Zhang F; Zhang Q; Nie B; Meng Y J Nanosci Nanotechnol; 2021 Jan; 21(1):22-42. PubMed ID: 33213611 [TBL] [Abstract][Full Text] [Related]
6. Full-scale pore characteristics in coal and their influence on the adsorption capacity of coalbed methane. Li Y; Liu W; Song D; Ren Z; Wang H; Guo X Environ Sci Pollut Res Int; 2023 Jun; 30(28):72187-72206. PubMed ID: 37166730 [TBL] [Abstract][Full Text] [Related]
7. Investigation on the Structure and Fractal Characteristics of Nanopores in High-Rank Coal: Implications for the Methane Adsorption Capacity. Yang Y; Yu K; Ju Y; Hu Q; Yu B; Qiao P; Chen L; Zhang P; Liu F; Song Y; Ju L; Li W J Nanosci Nanotechnol; 2021 Jan; 21(1):392-404. PubMed ID: 33213639 [TBL] [Abstract][Full Text] [Related]
8. Changes in mineral fraction and pore morphology of coal with acidification treatment: contribution of clay minerals to methane adsorption. Wang L; Li Z; Li J; Chen Y; Zhang K; Han X; Xu G Environ Sci Pollut Res Int; 2023 Nov; 30(54):114886-114900. PubMed ID: 37875755 [TBL] [Abstract][Full Text] [Related]
9. Characterization of coal porosity for naturally tectonically stressed coals in Huaibei coal field, China. Li X; Ju Y; Hou Q; Li Z; Wei M; Fan J ScientificWorldJournal; 2014; 2014():560450. PubMed ID: 25126601 [TBL] [Abstract][Full Text] [Related]
10. Relationship between the Geological Origins of Pore-Fracture and Methane Adsorption Behaviors in High-Rank Coal. Han S; Zhou X; Zhang J; Xiang W; Xu A ACS Omega; 2022 Mar; 7(9):8091-8102. PubMed ID: 35284768 [TBL] [Abstract][Full Text] [Related]
11. Experimental Study on Spontaneous Imbibition of Coal Samples of Different Ranks Based on the NMR Relaxation Spectrum. Wang N; Du Y; Fu C; Ma X; Zhang X; Wang J; Wang N ACS Omega; 2023 Sep; 8(37):33526-33542. PubMed ID: 37744802 [TBL] [Abstract][Full Text] [Related]
12. Petrophysical characterization of high-rank coal by nuclear magnetic resonance: a case study of the Baijiao coal reservoir, SW China. Zhang D; Chu Y; Li S; Yang Y; Bai X; Ye C; Wen D R Soc Open Sci; 2018 Dec; 5(12):181411. PubMed ID: 30662747 [TBL] [Abstract][Full Text] [Related]
13. Study on the mechanism of methane "solid-liquid-gas" conversion controlled by the evolution of coal micro- and nanopore structure. Sui H; Li X; Cai J; Deng S; Xu E; Xue F; Xie H Sci Rep; 2024 May; 14(1):11473. PubMed ID: 38769099 [TBL] [Abstract][Full Text] [Related]
14. Supercritical CO Yang Q; Li W; Jin K ACS Omega; 2020 Apr; 5(16):9276-9290. PubMed ID: 32363278 [TBL] [Abstract][Full Text] [Related]
15. Experimental Study on the Physisorption Characteristics of O Tan B; Cheng G; Zhu X; Yang X Sci Rep; 2020 Apr; 10(1):6946. PubMed ID: 32332828 [TBL] [Abstract][Full Text] [Related]
16. Classification of Pore-fracture Combination Types in Tectonic Coal Based on Mercury Intrusion Porosimetry and Nuclear Magnetic Resonance. Ni X; Zhao Z; Wang B; Li Z ACS Omega; 2020 Dec; 5(51):33225-33234. PubMed ID: 33403284 [TBL] [Abstract][Full Text] [Related]
17. Low-Field NMR Experimental Study on the Effect of Confining Pressure on the Porous Structure and Connectivity of High-Rank Coal. Pi Z; Dong Z; Li R; Wang Y; Li G; Zhang Y; Peng B; Meng L; Fu S; Yin G ACS Omega; 2022 Apr; 7(16):14283-14290. PubMed ID: 35573215 [TBL] [Abstract][Full Text] [Related]
18. Experimental Investigation of the Matrix Pore Size Distribution and Inner Surface Fractal Dimension of Different-Structure High Rank Coals. Wang R; Li G; Liu S J Nanosci Nanotechnol; 2021 Jan; 21(1):529-537. PubMed ID: 33213651 [TBL] [Abstract][Full Text] [Related]
19. Investigation on the Nanopore Heterogeneity in Coals and its Influence on Methane Adsorption: A Multifractal Theory Study. Fang J; Li Q; Yin T; Cai Y ACS Omega; 2024 Apr; 9(17):19504-19516. PubMed ID: 38708286 [TBL] [Abstract][Full Text] [Related]
20. Change Laws of Pore-Fracture Structure of Coal under High-Temperature Steam Shock. Xu Y; Lin B; Li Y ACS Omega; 2022 Dec; 7(48):44298-44309. PubMed ID: 36506116 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]