These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
272 related articles for article (PubMed ID: 33213655)
1. Effect of Temperature and Pressure on Nanoscale Pores in Closed Coal. He J; Wang M; Pan J; Wang X; Tang Y J Nanosci Nanotechnol; 2021 Jan; 21(1):567-577. PubMed ID: 33213655 [TBL] [Abstract][Full Text] [Related]
2. Nanoscale Pore Structure Characteristics of Deep Coalbed Methane Reservoirs and Its Influence on CH₄ Adsorption in the Linxing Area, Eastern Ordos Basin, China. Gao XD; Wang YB; Wu X; Li Y; Ni XM; Zhao SH J Nanosci Nanotechnol; 2021 Jan; 21(1):43-56. PubMed ID: 33213612 [TBL] [Abstract][Full Text] [Related]
3. Full-scale pore characteristics in coal and their influence on the adsorption capacity of coalbed methane. Li Y; Liu W; Song D; Ren Z; Wang H; Guo X Environ Sci Pollut Res Int; 2023 Jun; 30(28):72187-72206. PubMed ID: 37166730 [TBL] [Abstract][Full Text] [Related]
4. Study on the Effect of Pore Structure on Desorption Hysteresis of Deep Coking Coal under High-Temperature and High-Pressure Conditions. Zhang Y; Wang Z; Si S; Yue J ACS Omega; 2024 Jan; 9(3):3709-3729. PubMed ID: 38284077 [TBL] [Abstract][Full Text] [Related]
5. Nanopore Characteristics of Coal and Quantitative Analysis of Closed Holes in Coal. Li X; Zhang F; Li Z; Chen X; Zhang Q; Nie B; Yang T ACS Omega; 2020 Sep; 5(38):24639-24653. PubMed ID: 33015481 [TBL] [Abstract][Full Text] [Related]
6. Study on full-scale pores characterization and heterogeneity of coal based on low-temperature nitrogen adsorption and low-field nuclear magnetic resonance experiments. Lu F; Liu C; Zhang X; Jia B; Wang Y; Liu S; Tang Y; Liu J; Lin P Sci Rep; 2024 Jul; 14(1):16910. PubMed ID: 39043783 [TBL] [Abstract][Full Text] [Related]
7. Mineral Characteristics of Low-Rank Coal and the Effects on the Micro- and Nanoscale Pore-Fractures: A Case Study from the Zhundong Coalfield, Northwest China. Zhou S; Liu D; Cai Y; Wang Y; Yan D J Nanosci Nanotechnol; 2021 Jan; 21(1):460-471. PubMed ID: 33213645 [TBL] [Abstract][Full Text] [Related]
8. Selection Effect of Liquid Nitrogen Freeze-Thaw Cycles on Full Pore Size Distribution of Different Rank Coals. Li Y; Ren Z; Song D; Liu W; Wang H; Guo X ACS Omega; 2023 Mar; 8(10):9526-9538. PubMed ID: 36936307 [TBL] [Abstract][Full Text] [Related]
9. Study on the difference of pore structure of anthracite under different particle sizes using low-temperature nitrogen adsorption method. Qi L; Zhou X; Peng X; Chen X; Wang Z; An F Environ Sci Pollut Res Int; 2023 Jan; 30(2):5216-5230. PubMed ID: 35982386 [TBL] [Abstract][Full Text] [Related]
10. Nano/Micro Pore Structure and Fractal Characteristics of Baliancheng Coalfield in Hunchun Basin. Wang Y; Mao C J Nanosci Nanotechnol; 2021 Jan; 21(1):682-692. PubMed ID: 33213668 [TBL] [Abstract][Full Text] [Related]
11. Characteristics of Coal Porosity Changes before and after Triaxial Compression Shear Deformation under Different Confining Pressures. He H; Wang K; Pan J; Wang X; Wang Z ACS Omega; 2022 May; 7(19):16728-16739. PubMed ID: 35601307 [TBL] [Abstract][Full Text] [Related]
12. Investigation into the variation characteristics and influencing factors of coalbed methane gas content in deep coal seams. Zhu Q; Du X; Zhang T; Yu H; Liu X Sci Rep; 2024 Aug; 14(1):18813. PubMed ID: 39138202 [TBL] [Abstract][Full Text] [Related]
13. Pore Size Distribution and Fractal Characteristics of Deep Coal in the Daning-Jixian Block on the Eastern Margin of the Ordos Basin. Zhang B; Wang H; Sun B; Ouyang Z; Dou W; Wang B; Lai P; Hu Z; Luo B; Yang M; Zeng Z ACS Omega; 2024 Jul; 9(30):32837-32852. PubMed ID: 39100340 [TBL] [Abstract][Full Text] [Related]
14. Pore Structure Characteristics and Adsorption and Desorption Capacity of Coal Rock after Exposure to Clean Fracturing Fluid. Zuo W; Zhang W; Liu Y; Han H; Huang C; Jiang W; Mitri H ACS Omega; 2022 Jun; 7(25):21407-21417. PubMed ID: 35785274 [TBL] [Abstract][Full Text] [Related]
15. Investigation on the Nanopore Heterogeneity in Coals and its Influence on Methane Adsorption: A Multifractal Theory Study. Fang J; Li Q; Yin T; Cai Y ACS Omega; 2024 Apr; 9(17):19504-19516. PubMed ID: 38708286 [TBL] [Abstract][Full Text] [Related]
16. Investigation on Adsorption Pore and Fractal Analyses of Low-Rank Coals in the Northern Qaidam Basin. Zhou X; He Q; Hou H ACS Omega; 2024 Feb; 9(8):9823-9834. PubMed ID: 38434888 [TBL] [Abstract][Full Text] [Related]
17. Dynamic Evolution of Nanoscale Pores of Different Rank Coals Under Solvent Extraction. Zhang X; Zhang S; Li X; Heng S J Nanosci Nanotechnol; 2021 Jan; 21(1):450-459. PubMed ID: 33213644 [TBL] [Abstract][Full Text] [Related]
18. Relationship between the Geological Origins of Pore-Fracture and Methane Adsorption Behaviors in High-Rank Coal. Han S; Zhou X; Zhang J; Xiang W; Xu A ACS Omega; 2022 Mar; 7(9):8091-8102. PubMed ID: 35284768 [TBL] [Abstract][Full Text] [Related]
19. Nanoscale Pore Fractal Characteristics of Permian Shale and Its Impact on Methane-Bearing Capacity: A Case Study from Southern North China Basin, Central China. Wei X; Chen Q; Zhang J; Nie H; Dang W; Li Z; Tang X; Lang Y; Lin L J Nanosci Nanotechnol; 2021 Jan; 21(1):139-155. PubMed ID: 33213619 [TBL] [Abstract][Full Text] [Related]
20. Multifractal Analysis in Characterizing Adsorption Pore Heterogeneity of Middle- and High-Rank Coal Reservoirs. Zhang J; Wei C; Chu X; Vandeginste V; Ju W ACS Omega; 2020 Aug; 5(31):19385-19401. PubMed ID: 32803032 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]