These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
272 related articles for article (PubMed ID: 33213655)
21. Experimental Study on the Properties of Gas Diffusion in Various Rank Coals under Positive Pressure. Gao T; Han Q; Deng C; Zhang H ACS Omega; 2023 Mar; 8(11):10618-10628. PubMed ID: 36969411 [TBL] [Abstract][Full Text] [Related]
22. Micro-Pore Reservoir Spaces and Gas-Bearing Characteristics of the Shale Reservoirs of the Coal Measure Strata in the Qinshui Basin. Ma R; Wang M; Xie W; Wang H J Nanosci Nanotechnol; 2021 Jan; 21(1):371-381. PubMed ID: 33213637 [TBL] [Abstract][Full Text] [Related]
23. Experimental Study of the Pore Structure and Gas Desorption Characteristics of a Low-Rank Coal: Impact of Moisture. Chen M; Chen X; Zhang X; Tian F; Sun W; Yang Y; Zhang T ACS Omega; 2022 Oct; 7(42):37293-37303. PubMed ID: 36312393 [TBL] [Abstract][Full Text] [Related]
24. Experimental Investigation of the Matrix Pore Size Distribution and Inner Surface Fractal Dimension of Different-Structure High Rank Coals. Wang R; Li G; Liu S J Nanosci Nanotechnol; 2021 Jan; 21(1):529-537. PubMed ID: 33213651 [TBL] [Abstract][Full Text] [Related]
25. Applicability Analysis of Determination Models for Nanopores in Coal Using Low-Pressure CO₂ and N₂ Adsorption Methods. Li Y; Song D; Li G; Ji X; Tang J; Lan F; Fan S J Nanosci Nanotechnol; 2021 Jan; 21(1):472-483. PubMed ID: 33213646 [TBL] [Abstract][Full Text] [Related]
26. Characterization of Pore Structure and Its Relationship with Methane Adsorption on Medium-High Volatile Bituminous Coal: An Experimental Study Using Nuclear Magnetic Resonance. Zhang B; Fu X; Deng Z; Hao M J Nanosci Nanotechnol; 2021 Jan; 21(1):515-528. PubMed ID: 33213650 [TBL] [Abstract][Full Text] [Related]
27. Influence of Nanopore Structure Deformation on Gas Migration in Coal. Ji X; Song D; Shi W; Li Y ACS Omega; 2021 Jul; 6(29):19115-19126. PubMed ID: 34337249 [TBL] [Abstract][Full Text] [Related]
28. Fractal Characteristics and Its Controlling Factors of Nanopore of Coal from Shanxi Province, North China. Xu Z; Li M; Xu Y; Sun L J Nanosci Nanotechnol; 2021 Jan; 21(1):727-740. PubMed ID: 33213674 [TBL] [Abstract][Full Text] [Related]
29. Effect of Tectonic Deformation on the Pore System and Methane Adsorption of Anthracite Coal. Zhu M; Jing T; Yuan H; Zhang J ACS Omega; 2024 Aug; 9(32):34250-34258. PubMed ID: 39157146 [TBL] [Abstract][Full Text] [Related]
30. Molecular Simulation on Competitive Adsorption Differences of Gas with Different Pore Sizes in Coal. Han Q; Deng C; Gao T; Jin Z Molecules; 2022 Feb; 27(5):. PubMed ID: 35268694 [TBL] [Abstract][Full Text] [Related]
31. Apparent Permeability Model of Coalbed Methane in Moist Coal: Coupling Gas Adsorption and Moisture Adsorption. Peng Z; Liu S; Deng Z; Feng H; Xiao M ACS Omega; 2023 Jun; 8(24):21677-21688. PubMed ID: 37360466 [TBL] [Abstract][Full Text] [Related]
32. Nanopore Structure of Different Rank Coals and Its Quantitative Characterization. Li X; Li Z; Zhang F; Zhang Q; Nie B; Meng Y J Nanosci Nanotechnol; 2021 Jan; 21(1):22-42. PubMed ID: 33213611 [TBL] [Abstract][Full Text] [Related]
33. Micro-Nanostructure of Coal and Adsorption-Diffusion Characteristics of Methane. Jia T; Liu C; Wei G; Yan J; Zhang Q; Niu L; Liu X; Zhang M; Ju Y; Zhang Y J Nanosci Nanotechnol; 2021 Jan; 21(1):422-430. PubMed ID: 33213641 [TBL] [Abstract][Full Text] [Related]
34. Construction of Buertai Coal Macromolecular Model and GCMC Simulation of Methane Adsorption in Micropores. Yang Z; Yin Z; Xue W; Meng Z; Li Y; Long J; Wang J ACS Omega; 2021 May; 6(17):11173-11182. PubMed ID: 34056272 [TBL] [Abstract][Full Text] [Related]
35. Study for the Effect of Temperature on Methane Desorption Based on Thermodynamics and Kinetics. Gao Z; Ma D; Chen Y; Zheng C; Teng J ACS Omega; 2021 Jan; 6(1):702-714. PubMed ID: 33458523 [TBL] [Abstract][Full Text] [Related]
36. Supercritical-CO Liu H; Sang S; Liu S; Wu H; Lan T; Xu H; Ren B ACS Omega; 2019 Jul; 4(7):11685-11700. PubMed ID: 31460275 [TBL] [Abstract][Full Text] [Related]
37. Changes in pore structure of coal caused by coal-to-gas bioconversion. Zhang R; Liu S; Bahadur J; Elsworth D; Wang Y; Hu G; Liang Y Sci Rep; 2017 Jun; 7(1):3840. PubMed ID: 28630465 [TBL] [Abstract][Full Text] [Related]
38. Petrographic and Geochemical Controls on Methane Genesis, Pore Fractal Attributes, and Sorption of Lower Gondwana Coal of Jharia Basin, India. Das PR; Mendhe VA; Kamble AD; Sharma P; Shukla P; Varma AK ACS Omega; 2022 Jan; 7(1):299-324. PubMed ID: 35036701 [TBL] [Abstract][Full Text] [Related]
39. Quantitative Characterization of Coal Shale Pores and Fractures Based on Combined High-Pressure Mercury Pressure and Low-Temperature N Zhang S; Tian H; Tang J; Zhang X ACS Omega; 2024 May; 9(19):20927-20936. PubMed ID: 38764618 [TBL] [Abstract][Full Text] [Related]
40. Changes in mineral fraction and pore morphology of coal with acidification treatment: contribution of clay minerals to methane adsorption. Wang L; Li Z; Li J; Chen Y; Zhang K; Han X; Xu G Environ Sci Pollut Res Int; 2023 Nov; 30(54):114886-114900. PubMed ID: 37875755 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]