These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 33213667)

  • 1. Characterization of the Heterogeneous Evolution of the Nanostructure of Coal-Based Graphite.
    Cao D; Wang L; Ding Z; Peng Y; Li Y
    J Nanosci Nanotechnol; 2021 Jan; 21(1):670-681. PubMed ID: 33213667
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Feasibility for High-Temperature Graphitization of Deformed Meager Coal.
    Guo X; Huan X; Chen X
    ACS Omega; 2023 Oct; 8(42):39154-39167. PubMed ID: 37901580
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Classification and carbon structural transformation from anthracite to natural coaly graphite by XRD, Raman spectroscopy, and HRTEM.
    Li K; Liu Q; Cheng H; Hu M; Zhang S
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Mar; 249():119286. PubMed ID: 33340959
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mineral Composition and Graphitization Structure Characteristics of Contact Thermally Altered Coal.
    Luo H; Liang W; Wei C; Wu D; Gao X; Hu G
    Molecules; 2022 Jun; 27(12):. PubMed ID: 35744935
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of Nanostructure Evolution in Coal Molecules of Different Ranks.
    Meng J; Zhong R; Niu J; Li S; Nie B
    J Nanosci Nanotechnol; 2021 Jan; 21(1):405-421. PubMed ID: 33213640
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of Graphitization Degree on the Electrochemical and Thermal Properties of Coal.
    Xu X; Cao D; Wei Y; Wang A; Chen G; Wang T; Wang G; Chen X
    ACS Omega; 2024 Jan; 9(2):2443-2456. PubMed ID: 38250349
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes and Migration of Coal-Derived Minerals on the Graphitization Process of Anthracite.
    Wang L; Qiu T; Guo Z; Shen X; Yang J; Wang Y
    ACS Omega; 2021 Jan; 6(1):180-187. PubMed ID: 33458470
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular structure characterization of bituminous coal in Northern China via XRD, Raman and FTIR spectroscopy.
    Jiang J; Zhang S; Longhurst P; Yang W; Zheng S
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Jul; 255():119724. PubMed ID: 33784595
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Raman Study of the Diamond to Graphite Transition Induced by the Single Femtosecond Laser Pulse on the (111) Face.
    Khomich AA; Kononenko V; Kudryavtsev O; Zavedeev E; Khomich AV
    Nanomaterials (Basel); 2022 Dec; 13(1):. PubMed ID: 36616073
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study on the Formation Mechanism of a Core-Shell Structure during Graphitization of Anthracite.
    Qiu T; Xie W; Bai X; Li C; Zhang N
    ACS Omega; 2024 May; 9(21):22581-22589. PubMed ID: 38826517
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-Dimensional X-ray Reflections from Anthracite and Meta-Anthracite.
    Ergun S; Mentser M; O'donnell HJ
    Science; 1960 Nov; 132(3436):1314-6. PubMed ID: 17753063
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Spectroscopy Characterization of Anthracite Oxide].
    Huang DB; Chuan XY; Cao X
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Nov; 36(11):3698-703. PubMed ID: 30226691
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure evolution characterization of Anyang anthracites via H2O2 oxidization and HF acidification.
    Zhang Y; Tan J; Kang X; Yu H; Frost RL
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Sep; 130():574-80. PubMed ID: 24813288
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Study of coal and graphite specimens by means of Raman and cathodoluminescence.
    Kostova I; Tormo L; Crespo-Feo E; Garcia-Guinea J
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Jun; 91():67-74. PubMed ID: 22366616
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pyrolytic Modification of Heavy Coal Tar by Multi-Polymer Blending: Preparation of Ordered Carbonaceous Mesophase.
    Zhang L; Liu C; Jia Y; Mu Y; Yan Y; Huang P
    Polymers (Basel); 2024 Jan; 16(1):. PubMed ID: 38201826
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental study on the effect of cold soaking with liquid nitrogen on the coal chemical and microstructural characteristics.
    Liu S; Li X
    Environ Sci Pollut Res Int; 2023 Mar; 30(13):36080-36097. PubMed ID: 36542286
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of Boron Doping on the Interlayer Spacing of Graphite.
    Bao C; Zeng Q; Li F; Shi L; Wu W; Yang L; Chen Y; Liu H
    Materials (Basel); 2022 Jun; 15(12):. PubMed ID: 35744262
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [The spectrum studies of structure characteristics in magma contact metamorphic coal].
    Wu D; Sun RY; Liu GJ; Yuan ZJ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2013 Oct; 33(10):2861-4. PubMed ID: 24409751
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fourier Transform Infrared Spectroscopy Evidence of the Nanoscale Structural Jump in Medium-Rank Tectonic Coal.
    Zhang X; Jia T; Zhang H; Ju Y; Zhang Y
    J Nanosci Nanotechnol; 2021 Jan; 21(1):636-645. PubMed ID: 33213664
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemical Structure Evolution of Thermally Altered Coal during the Preparation of Coal-Based Graphene and Division of Thermally Altered Zone: Based on FTIR and Raman.
    Li R; Tang Y; Song X; Wang S; Che Q; Chen C
    ACS Omega; 2024 Aug; 9(32):34397-34412. PubMed ID: 39157093
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.