These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 33213875)

  • 1. Zirconium retention for minimizing environmental risk: Role of counterion and clay mineral.
    Montes L; Pavón E; Cota A; Alba MD
    Chemosphere; 2021 Mar; 267():128914. PubMed ID: 33213875
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insight into the role of temperature, time and pH in the effective zirconium retention using clay minerals.
    Pavón E; Alba MD
    J Environ Manage; 2022 Apr; 308():114635. PubMed ID: 35114518
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Zirconium-modified natural clays for phosphate removal: Effect of clay minerals.
    Huo J; Min X; Wang Y
    Environ Res; 2021 Mar; 194():110685. PubMed ID: 33428913
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formation of replicating saponite from a gel in the presence of oxalate: implications for the formation of clay minerals in carbonaceous chondrites and the origin of life.
    Schumann D; Hartman H; Eberl DD; Sears SK; Hesse R; Vali H
    Astrobiology; 2012 Jun; 12(6):549-61. PubMed ID: 22794298
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystal chemistry of sodium zirconium phosphate based simulated ceramic waste forms of effluent cations (Ba(2+), Sn(4+), Fe(3+), Cr(3+), Ni(2+) and Si(4+)) from light water reactor fuel reprocessing plants.
    Shrivastava OP; Chourasia R
    J Hazard Mater; 2008 May; 153(1-2):285-92. PubMed ID: 17905513
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Iodide uptake by negatively charged clay interlayers?
    Miller A; Kruichak J; Mills M; Wang Y
    J Environ Radioact; 2015 Sep; 147():108-14. PubMed ID: 26057987
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solid-phase zirconium and fluoride species in alkaline zircaloy cladding waste at Hanford.
    Reynolds JG; Huber HJ; Cooke GA; Pestovich JA
    J Hazard Mater; 2014 Aug; 278():203-10. PubMed ID: 24976128
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Long-term geochemical evolution of the near field repository: insights from reactive transport modelling and experimental evidences.
    Arcos D; Grandia F; Domènech C; Fernández AM; Villar MV; Muurinen A; Carlsson T; Sellin P; Hernán P
    J Contam Hydrol; 2008 Dec; 102(3-4):196-209. PubMed ID: 18992963
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Removal of uranium(VI) from aqueous solutions and nuclear industry effluents using humic acid-immobilized zirconium-pillared clay.
    Anirudhan TS; Bringle CD; Rijith S
    J Environ Radioact; 2010 Mar; 101(3):267-76. PubMed ID: 20045229
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relationship between sediment clay minerals and total mercury.
    Kongchum M; Hudnall WH; DeLaune RD
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2011; 46(5):534-9. PubMed ID: 21469014
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Corrosion of high-level radioactive waste iron-canisters in contact with bentonite.
    Kaufhold S; Hassel AW; Sanders D; Dohrmann R
    J Hazard Mater; 2015 Mar; 285():464-73. PubMed ID: 25536393
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stepwise effects of the BCR sequential chemical extraction procedure on dissolution and metal release from common ferromagnesian clay minerals: a combined solution chemistry and X-ray powder diffraction study.
    Ryan PC; Hillier S; Wall AJ
    Sci Total Environ; 2008 Dec; 407(1):603-14. PubMed ID: 18951614
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design and Application of Materials for Sequestration and Immobilization of
    Singh BK; Mahzan NS; Abdul Rashid NS; Isa SA; Hafeez MA; Saslow S; Wang G; Mo C; Um W
    Environ Sci Technol; 2023 May; 57(17):6776-6798. PubMed ID: 37071722
    [No Abstract]   [Full Text] [Related]  

  • 14. Investigation of irradiated soil byproducts.
    Brey RR; Rodriguez R; Harmon JF; Winston P
    Waste Manag; 2001; 21(6):581-8. PubMed ID: 11478625
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reduction of Se(IV) in boom clay: XAS solid phase speciation.
    Breynaert E; Scheinost AC; Dom D; Rossberg A; Vancluysen J; Gobechiya E; Kirschhock CE; Maes A
    Environ Sci Technol; 2010 Sep; 44(17):6649-55. PubMed ID: 20704178
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measurement of Cu and Zn adsorption onto surficial sediment components: new evidence for less importance of clay minerals.
    Wang X; Li Y
    J Hazard Mater; 2011 May; 189(3):719-23. PubMed ID: 21466918
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Long-term non-isothermal reactive transport model of compacted bentonite, concrete and corrosion products in a HLW repository in clay.
    Mon A; Samper J; Montenegro L; Naves A; Fernández J
    J Contam Hydrol; 2017 Feb; 197():1-16. PubMed ID: 28069315
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modelling of geochemical reactions and experimental cation exchange in MX 80 bentonite.
    Montes-H G; Fritz B; Clement A; Michau N
    J Environ Manage; 2005 Oct; 77(1):35-46. PubMed ID: 15946786
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microbial reduction of structural iron in interstratified illite-smectite minerals by a sulfate-reducing bacterium.
    Liu D; Dong H; Bishop ME; Zhang J; Wang H; Xie S; Wang S; Huang L; Eberl DD
    Geobiology; 2012 Mar; 10(2):150-62. PubMed ID: 22074236
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stability, Composition, and Core-Shell Particle Structure of Uranium(IV)-Silicate Colloids.
    Neill TS; Morris K; Pearce CI; Sherriff NK; Burke MG; Chater PA; Janssen A; Natrajan L; Shaw S
    Environ Sci Technol; 2018 Aug; 52(16):9118-9127. PubMed ID: 30001122
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.