BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 33214108)

  • 1. A 3-D constitutive model for finite element analyses of agarose with a range of gel concentrations.
    Wang X; June RK; Pierce DM
    J Mech Behav Biomed Mater; 2021 Feb; 114():104150. PubMed ID: 33214108
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Encapsulation of chondrocytes in high-stiffness agarose microenvironments for in vitro modeling of osteoarthritis mechanotransduction.
    Jutila AA; Zignego DL; Schell WJ; June RK
    Ann Biomed Eng; 2015 May; 43(5):1132-44. PubMed ID: 25395215
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The mechanical microenvironment of high concentration agarose for applying deformation to primary chondrocytes.
    Zignego DL; Jutila AA; Gelbke MK; Gannon DM; June RK
    J Biomech; 2014 Jun; 47(9):2143-8. PubMed ID: 24275437
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic deformational loading results in selective application of mechanical stimulation in a layered, tissue-engineered cartilage construct.
    Ng KW; Mauck RL; Statman LY; Lin EY; Ateshian GA; Hung CT
    Biorheology; 2006; 43(3,4):497-507. PubMed ID: 16912421
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of concentration, thermal history and cell seeding density on the initial mechanical properties of agarose hydrogels.
    Buckley CT; Thorpe SD; O'Brien FJ; Robinson AJ; Kelly DJ
    J Mech Behav Biomed Mater; 2009 Oct; 2(5):512-21. PubMed ID: 19627858
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A finite element model of cell-matrix interactions to study the differential effect of scaffold composition on chondrogenic response to mechanical stimulation.
    Appelman TP; Mizrahi J; Seliktar D
    J Biomech Eng; 2011 Apr; 133(4):041010. PubMed ID: 21428684
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct noninvasive measurement and numerical modeling of depth-dependent strains in layered agarose constructs.
    Griebel AJ; Khoshgoftar M; Novak T; van Donkelaar CC; Neu CP
    J Biomech; 2014 Jun; 47(9):2149-56. PubMed ID: 24182772
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design and validation of an in vitro loading system for the combined application of cyclic compression and shear to 3D chondrocytes-seeded agarose constructs.
    Di Federico E; Bader DL; Shelton JC
    Med Eng Phys; 2014 Apr; 36(4):534-40. PubMed ID: 24355317
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational Modeling of Mouse Colorectum Capturing Longitudinal and Through-thickness Biomechanical Heterogeneity.
    Zhao Y; Siri S; Feng B; Pierce DM
    J Mech Behav Biomed Mater; 2021 Jan; 113():104127. PubMed ID: 33125950
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Injectable three-dimensional tumor microenvironments to study mechanobiology in ovarian cancer.
    Horst EN; Novak CM; Burkhard K; Snyder CS; Verma R; Crochran DE; Geza IA; Fermanich W; Mehta P; Schlautman DC; Tran LA; Brezenger ME; Mehta G
    Acta Biomater; 2022 Jul; 146():222-234. PubMed ID: 35487424
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional tissue engineering of chondral and osteochondral constructs.
    Lima EG; Mauck RL; Han SH; Park S; Ng KW; Ateshian GA; Hung CT
    Biorheology; 2004; 41(3-4):577-90. PubMed ID: 15299288
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biphasic Finite Element Modeling Reconciles Mechanical Properties of Tissue-Engineered Cartilage Constructs Across Testing Platforms.
    Meloni GR; Fisher MB; Stoeckl BD; Dodge GR; Mauck RL
    Tissue Eng Part A; 2017 Jul; 23(13-14):663-674. PubMed ID: 28414616
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular analysis of chondrocytes cultured in agarose in response to dynamic compression.
    Bougault C; Paumier A; Aubert-Foucher E; Mallein-Gerin F
    BMC Biotechnol; 2008 Sep; 8():71. PubMed ID: 18793425
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomechanical study of the edge outgrowth phenomenon of encapsulated chondrocytic isogenous groups in the surface layer of hydrogel scaffolds for cartilage tissue engineering.
    Ng SS; Su K; Li C; Chan-Park MB; Wang DA; Chan V
    Acta Biomater; 2012 Jan; 8(1):244-52. PubMed ID: 21906699
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of radial variations in material properties and matrix composition of chondrocyte-seeded agarose hydrogel constructs.
    Kelly TA; Ng KW; Ateshian GA; Hung CT
    Osteoarthritis Cartilage; 2009 Jan; 17(1):73-82. PubMed ID: 18805027
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design and construction of a novel measurement device for mechanical characterization of hydrogels: A case study.
    Shahab S; Kasra M; Dolatshahi-Pirouz A
    PLoS One; 2021; 16(2):e0247727. PubMed ID: 33630967
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The influence of cyclic tension amplitude on chondrocyte matrix synthesis: experimental and finite element analyses.
    Connelly JT; Vanderploeg EJ; Levenston ME
    Biorheology; 2004; 41(3-4):377-87. PubMed ID: 15299270
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Agarose gel stiffness determines rate of DRG neurite extension in 3D cultures.
    Balgude AP; Yu X; Szymanski A; Bellamkonda RV
    Biomaterials; 2001 May; 22(10):1077-84. PubMed ID: 11352088
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Finite difference time domain model of ultrasound propagation in agarose scaffold containing collagen or chondrocytes.
    Inkinen SI; Liukkonen J; Malo MK; Virén T; Jurvelin JS; Töyräs J
    J Acoust Soc Am; 2016 Jul; 140(1):1. PubMed ID: 27475127
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A method for incorporating three-dimensional residual stretches/stresses into patient-specific finite element simulations of arteries.
    Pierce DM; Fastl TE; Rodriguez-Vila B; Verbrugghe P; Fourneau I; Maleux G; Herijgers P; Gomez EJ; Holzapfel GA
    J Mech Behav Biomed Mater; 2015 Jul; 47():147-164. PubMed ID: 25931035
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.