BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 33214128)

  • 1. Modelling Förster resonance energy transfer (FRET) using anisotropy resolved multi-dimensional emission spectroscopy (ARMES).
    Gordon F; Elcoroaristizabal S; Ryder AG
    Biochim Biophys Acta Gen Subj; 2021 Feb; 1865(2):129770. PubMed ID: 33214128
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transfer of ANS-Like Drugs from Micellar Drug Delivery Systems to Albumin Is Highly Favorable and Protected from Competition with Surfactant by "Reserved" Binding Sites.
    Carabadjac I; Vormittag LC; Muszer T; Wuth J; Ulbrich MH; Heerklotz H
    Mol Pharm; 2024 May; 21(5):2198-2211. PubMed ID: 38625037
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Förster resonance energy transfer: Role of diffusion of fluorophore orientation and separation in observed shifts of FRET efficiency.
    Wallace B; Atzberger PJ
    PLoS One; 2017; 12(5):e0177122. PubMed ID: 28542211
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A fluorescent indicator for imaging lysosomal zinc(II) with Förster resonance energy transfer (FRET)-enhanced photostability and a narrow band of emission.
    Sreenath K; Yuan Z; Allen JR; Davidson MW; Zhu L
    Chemistry; 2015 Jan; 21(2):867-74. PubMed ID: 25382395
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimating the distance separating fluorescent protein FRET pairs.
    Vogel SS; van der Meer BW; Blank PS
    Methods; 2014 Mar; 66(2):131-8. PubMed ID: 23811334
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measurement of FRET efficiency and ratio of donor to acceptor concentration in living cells.
    Chen H; Puhl HL; Koushik SV; Vogel SS; Ikeda SR
    Biophys J; 2006 Sep; 91(5):L39-41. PubMed ID: 16815904
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantification of FRET-induced angular displacement by monitoring sensitized acceptor anisotropy using a dim fluorescent donor.
    Laskaratou D; Fernández GS; Coucke Q; Fron E; Rocha S; Hofkens J; Hendrix J; Mizuno H
    Nat Commun; 2021 May; 12(1):2541. PubMed ID: 33953187
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of emission anisotropy on fluorescence spectroscopy and FRET distance measurements.
    Ivanov V; Li M; Mizuuchi K
    Biophys J; 2009 Aug; 97(3):922-9. PubMed ID: 19651051
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessing Protein Interactions in Live-Cells with FRET-Sensitized Emission.
    Vámosi G; Miller S; Sinha M; Fernandez MK; Mocsár G; Renz M
    J Vis Exp; 2021 Apr; (170):. PubMed ID: 33970141
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection of Protein Interactions in the Cytoplasm and Periplasm of
    Meiresonne NY; Alexeeva S; van der Ploeg R; den Blaauwen T
    Bio Protoc; 2018 Jan; 8(2):e2697. PubMed ID: 34179246
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural heterogeneity and quantitative FRET efficiency distributions of polyprolines through a hybrid atomistic simulation and Monte Carlo approach.
    Hoefling M; Lima N; Haenni D; Seidel CA; Schuler B; Grubmüller H
    PLoS One; 2011; 6(5):e19791. PubMed ID: 21629703
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation by Experimentation and Simulation of a FRET Pair Comprising Fluorescent Nucleobase Analogs in Nucleosomes.
    Hirashima S; Park S; Sugiyama H
    Chemistry; 2023 Apr; 29(24):e202203961. PubMed ID: 36700521
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Fluorescent Indicator for Imaging Lysosomal Zinc(II) with Förster Resonance Energy Transfer (FRET)-Enhanced Photostability and a Narrow Band of Emission.
    Sreenath K; Yuan Z; Allen JR; Davidson MW; Zhu L
    Chemistry; 2014 Nov; ():. PubMed ID: 25378058
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chromatin nanoscale compaction in live cells visualized by acceptor-to-donor ratio corrected Förster resonance energy transfer between DNA dyes.
    Pelicci S; Diaspro A; Lanzanò L
    J Biophotonics; 2019 Dec; 12(12):e201900164. PubMed ID: 31365191
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Forster Resonance Energy Transfer (FRET) to Visualize Protein-Protein Interactions in the Plant Cell.
    Gnanasekaran P; Pappu HR
    Methods Mol Biol; 2023; 2690():133-135. PubMed ID: 37450144
    [TBL] [Abstract][Full Text] [Related]  

  • 16. N-way FRET microscopy of multiple protein-protein interactions in live cells.
    Hoppe AD; Scott BL; Welliver TP; Straight SW; Swanson JA
    PLoS One; 2013; 8(6):e64760. PubMed ID: 23762252
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The three-dimensional context of a double helix determines the fluorescence of the internucleoside-tethered pair of fluorophores.
    Metelev V; Zhang S; Tabatadze D; Kumar AT; Bogdanov A
    Mol Biosyst; 2013 Oct; 9(10):2447-53. PubMed ID: 23925269
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Förster resonance energy transfer efficiency measurements on vinculin tension sensors at focal adhesions using a simple and cost-effective setup.
    Dubois C; Houel-Renault L; Erard M; Boustany NN; Westbrook N
    J Biomed Opt; 2023 Aug; 28(8):082808. PubMed ID: 37441563
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Time-domain microfluidic fluorescence lifetime flow cytometry for high-throughput Förster resonance energy transfer screening.
    Nedbal J; Visitkul V; Ortiz-Zapater E; Weitsman G; Chana P; Matthews DR; Ng T; Ameer-Beg SM
    Cytometry A; 2015 Feb; 87(2):104-18. PubMed ID: 25523156
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single-molecule FRET of protein structure and dynamics - a primer.
    Schuler B
    J Nanobiotechnology; 2013; 11 Suppl 1(Suppl 1):S2. PubMed ID: 24565277
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.